PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 57 | 1 |

Tytuł artykułu

Miscanthus: inter- and intraspecific genome size variation among M. xgiganteus, M. sinensis, M. sacchariflorus accessions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Since M. sinensis Anderss., M. sacchariflorus (Maxim.) Hack. and M. ×giganteus J.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production among Miscanthus Anderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteen Miscanthus accessions, as well as estimation of the monoploid genome size (2C and Cx) of the M. sinensis cultivars, which have not been analyzed yet. The characterization of three Miscanthus species was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57) M. sinensis 'Goliath' and M. ×giganteus clones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38) M. sinensis accessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38) M. sacchariflorus ecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed in M. sinensis cultivars at 3.62%. The values of the stomatal size obtained for the triploid M. ×giganteus 'Great Britain' (mean 30.70 μm) or 'Canada' (mean 29.67 μm) and diploid M. sinensis 'Graziella' (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.

Wydawca

-

Rocznik

Tom

57

Numer

1

Opis fizyczny

p.104-113,fig.,ref.

Twórcy

autor
  • Laboratory of Cytogenetics and Breeding Methodology, Department of Genetics and Breeding of Root Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Research Division in Bydgoszcz, Aleja Powstancow Wielkopolskich 10, 85-090 Bydgoszcz, Poland
autor
  • Laboratory of Cytogenetics and Breeding Methodology, Department of Genetics and Breeding of Root Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Research Division in Bydgoszcz, Aleja Powstancow Wielkopolskich 10, 85-090 Bydgoszcz, Poland
autor
  • Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics, Physiology and Biotechnology, University of Technology and Life Sciences, Aleja Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland

Bibliografia

  • ADATI S, and SHIOTANI I. 1962. The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bulletin of the Faculty of Agriculture Mie University 25: 1–24.
  • BENNETT MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106:177–200.
  • BENNETT MD, and LEITCH IJ. 2005. Plant genome size research: a field in focus. Annals of Botany 95: 1–6.
  • BENNETZEN JL, MA J, and DEVOS KM. 2005. Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95: 127–132.
  • CHAE WB. 2012. Cytogenetics and genome structure in genus Miscanthus, a potential source of bioenergy feedstocks.Ph.D. dissertation, University of Illinois at Urbana- Champaign, Urbana, IL.
  • CHRAMIEC-GŁĄBIK A, GRABOWSKA-JOACHIMIAK A, SLIWINSKA E, LEGUTKO and J, KULA A. 2012. Cytogenetic analysis ofMiscanthus ×giganteus and its parent forms.Caryologia 65: 234–242.
  • CLIFTON-BROWN JC, and LEWANDOWSKI I. 2000. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytologist 148: 287–294.
  • CLIFTON-BROWN JC, LEWANDOWSKI I, ANDERSSON B, BASCH G, CHRISTIAN DG, BONDERUP-KJELDSEN J, JØRGENSEN U,
  • MORTENSEN V, RICHE AB, SCHWARZ KU, TAYEBI K, and TEIXEIRA F. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal 93: 1013–1019.
  • CLIFTON-BROWN JC, CHIANG YCH, and HODKINSON TR. 2008. Miscanthus: Genetic Resources and Breeding Potentialto Enhance Bioenergy Production. In: Vermerris W [ed.],Genetic Improvement of Bioenergy Crops, 273–294.Springer, Gainesville, FL.
  • CICHORZ S, GOŚKA M, and LITWINIEC A. 2014. Miscanthus: Genetic diversity and genotype identification using ISSR and RAPD markers. Molecular Biotechnology 56: 911–924.
  • DOHLEMAN FG, and LONG SP. 2009. More productive than maize in the Midwest: how does Miscanthus do it? PlantPhysiology 150: 2104–2115.
  • DOLEžEL J, GREILHUBER J, LUCRETTI S, MEISTER A, LYSÁK MA, NARDI L, and OBERMAYER R. 1998. Plant genome size estimationby flow cytometry: inter-laboratory comparison.Annals of Botany 82: 17–26.
  • DOLEžEL J, BARTOŠ J, VOGLMAYR H, and GREILHUBER J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry Part A 51: 127–128.
  • DOLEžEL J and BARTOŠ J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95:99–110.
  • DOLEžEL J, GREILHUBER J, and SUDA J. 2007. Estimation of nuclear DNA content in plants using flow cytometry.Nature Protocols 2: 2233–2244.
  • GŁOWACKA K, JEżOWSKI S, and KACZMAREK Z. 2010. In vitro induction of polyploidy by colchicine treatment of shootsand preliminary characterization of induced polyploidsin two Miscanthus species. Industrial Crops andProducts 32: 88–96.
  • GŁOWACKA K, CLARK LV, ADHIKARI S, PENG J, STEWART JR, NISHIWAKI A, YAMADA T, JØRGENSEN U, HODKINSON TR,
  • GIFFORD J, JUVIK JA, and SACKS EJ. 2015. Genetic variation in Miscanthus ×giganteus and the importance ofestimating genetic distance thresholds for differentiatingclones. Global Change Biology Bioenergy 7:386–404.
  • HEATON EA, DOHLEMAN FG, MIGUEZ AF, JUVIK JA, LOZOVAYA V, WIDHOLM J, ZABOTINA OA, MCISAAC GF, and MARK B. 2010. Miscanthus: a promising biomass crop. Advancesin Botanical Research 56: 75–137.
  • HERNÁNDEZ P, DORADO G, LAURIE DA, MARTÍN A, and SNAPE JW. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theoretical and Applied Genetics 102: 616–622.
  • HODKINSON TR, CHASE MW, TAKAHASHI C, LEITCH IJ, BENNETT MD, and RENVOIZE SA. 2002a. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany 89: 279–286.
  • HODKINSON TR, CHASE MW, and RENVOIZE SA. 2002b. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Annals of Botany 89: 627–636.
  • HODKINSON TR, CHASE MW, LLEDO MD, SALAMIN N, and RENVOIZE SA. 2002c. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research 115: 381–392.
  • HUANG H, TONG Y, ZHANG QJ, and GAO LZ. 2013. Genome size variation among and within Camellia species by using flow cytometric analysis. PLoS ONE 8(5): e64981.doi:10.1371/journal.pone.0064981.
  • JENSEN E, FARRAR K, THOMAS-JONES S, HASTINGS A, DONNISON I, and CLIFTON-BROWN J. 2011. Characterization of flowering time diversity in Miscanthus species. Global Change Biology Bioenergy 3: 387–400.
  • JEżOWSKI S. 2008. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Industrial Crops and Products 27: 65–68.
  • JONES MB. 2011. C4 Species as Energy Crops. In: Raghavendra AS, Sage RF [ed.], C4 Photosynthesis and related CO2 concentrating mechanisms, 379–397.
  • JØRGENSEN U, and MUHS HJ. 2001. Miscanthus breeding and improvement. In: Jones MB, Walsh M [ed.], Miscanthus for energy and fiber, 68–86. James and James, London, United Kingdom.
  • LEITCH IJ, and BENNETT MD. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651–663.
  • LI X, HU D, LUO M, ZHU M, LI X, LUO F, LI J, and YAN J. 2013. Nuclear DNA content variation of three Miscanthus species in China. Genes & Genomics 35: 13–20.
  • LINDE-LAURSEN I. 1993. Cytogenetic analysis of Miscanthus 'Giganteus', an interspecific hybrid. Hereditas 119: 297–300.
  • MA XF, JENSEN E, ALEXANDROV N, TROUKHAN M, ZHANG L, THOMAS-JONES S, FARRAR K, CLIFTON-BROWN J, DONNISON I, SWALLER T, and FLAVELL R. 2012. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7(3): e33821. doi:10.1371/journal.pone.0033821.
  • MCLAUGHLIN SB, and WALSH ME. 1998. Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass and Bioenergy 14: 317–324.
  • MEYER MH, and TCHIDA CL. 1999. Miscanthus Anderss. produces viable seed in four USDA hardiness zones. Journal of Environmental Horticulture 17: 137–140.
  • MOON YH, CHA YL, CHOI YH, YOON YM, KOO BC, AHN JW, AN GH, KIM JK, and PARK KG. 2013. Diversity in ploidy levels and nuclear DNA amounts in Korean Miscanthus species. Euphytica 193: 317–326.
  • NISHIWAKI A, MIZUGUTI A, KUWABARA S, TOMA Y, ISHIGAKI G, MIYASHITA T, YAMADA T, MATUURA H, YAMAGUCHI S, RAYBURN AL, AKASHI R, and STEWART JR. 2011. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. American Journal of Botany 98: 154–159.
  • OHRI D. 1998. Genome size variation and plant systematics. Annals of Botany 82: 75–83.
  • ÖZKAN H, LEVY AA, and FELDMAN M. 2001. Allopolyploidyinduced rapid genome evolution in the wheat (Aegilops- Triticum) group. Plant Cell 13: 1735–1747.
  • ÖZKAN H, TUNA M, KILIAN B, MORI N, and OHTA S. 2010. Genome size variation in diploid and tetraploid wild wheats. AoB Plants doi:10.1093/aobpla/plq015.
  • PURDY SJ, MADDISON AL, JONES LE, WEBSTER RJ, ANDRALOJC J, DONNISON I, and CLIFTON-BROWN J. 2013. Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. ×giganteus compared with M. sinensis and M. sacchariflorus. Annals of Botany 111: 999–1013.
  • QUINN LD, ALLEN DJ, and STEWART JR. 2010. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. Global Change Biology Bioenergy 2: 310–320.
  • RAYBURN AL, BIRADAR DP, NELSON RL, MCCLOSKEY R, and YEATER KM. 2004. Documenting intraspecific genome size variation in soybean. Crop Science 44: 261–264.
  • RAYBURN AL, MCCLOSKEY R, TATUM TC, BOLLERO GA, JESCHKE MR, and TRANEL PJ. 2005. Genome size analysis of weedy Amaranthus species. Crop Science 45: 2557–2562.
  • RAYBURN AL, CRAWFORD J, RAYBURN CM, and JUVIK JA. 2009. Genome size of three Miscanthus species. Plant Molecular Biology Reporter 27: 184–188.
  • SACKS EJ, JUVIK JA, LIN Q, STEWART JR, and YAMADA T. 2013. The gene pool of Miscanthus species and its improvement. In: Paterson AH [ed.], Genomics of the Saccharinae, Plant Genetics and Genomics: Crops and Models, 73–100. Springer Science + Business Media, New York, NY.
  • SANMIGUEL P, and BENNETZEN JL. 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany 82: 37–44.
  • SLIWINSKA E, ZIELINSKA E, and JEDRZEJCZYK I. 2005. Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry Part A 64: 72–79.
  • SWAMINATHAN K, ALABADY MS, VARALA K, DE PAOLI E, HO I, ROKHSAR DS, ARUMUGANATHAN AK, MING R, GREEN PJ,
  • MEYERS BC, MOOSE SP, and HUDSON ME. 2010. Genomic and small RNA sequencing of Miscanthus ×giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biology 11: R12. doi: 10.1186/gb-2010-11-2-r12.
  • ŠMARDA P, and BUREŠ P. 2010. Understanding intraspecific genome size variation. Preslia 82: 41–61.
  • TRÁVNÍCEK P, KIRSCHNER J, CHUDÁCKOVÁ H, ROOKS F, and ŠTÌPÁNEK J. 2013. Substantial genome size variation inTaraxacum stenocephalum (Asteraceae, Lactuceae).Folia Geobotanica 48: 271–284.
  • ZHANG J, NAGAI C, YU Q, PAN YB, AYALA-SILVA T, SCHNELL RJ, COMSTOCK JC, ARUMUGANATHAN AK, and MING R. 2012. Genome size variation in three Saccharum species. Euphytica 185: 511–519.
  • ZUB HW, ARNOULT A, and BRANCOURT-HULMEL M. 2011. Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass and Bioenergy 35: 637–651.
  • ZUB HW, RAMBAUD C, BÉTHENCOURT L, and BRANCOURT-HULMEL M. 2012. Late emergence and rapid growth maximize the plant development of Miscanthus clones. BioEnergy Research 5: 841–854.
  • ZUCCOLO A, SEBASTIAN A, TALAG J, YU Y, KIM H, COLLURA K, KUDRNA D, and WING RA. 2007. Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evolutionary Biology 7: 152 doi:10.1186/1471-2148-7-152.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-55969373-12b6-4500-92ae-64a6383c991b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.