PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 61 | 1 |

Tytuł artykułu

Prevalence of cagA, vacA, babA2 and iceA genes in H. pylori strains isolated from Colombian patients with functional dyspepsia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The clinical outcome of Helicobacter pylori infection has been particularly associated with virulence genotypes. These genotypes are useful as molecular markers in the identification of patients that are infected and at high risk for developing more severe gastric pathologies. Our main objective was to determine the prevalence of virulence genotypes cagA, vacA, iceA and babA2 of H.pylori, in patients with functional dyspepsia who are infected with the bacteria. H. pylori genotypes babA2 and cagA as well as vacA and iceA allelic variants were identified by PCR in 122 isolates resulting from 79 patients with functional dyspepsia. A high prevalence of genes cagA+ (71%), vacAs1am1 (34%), babA2 (57%) and iceA1 (87%) was found. The most frequent combined genotype found were cagA+/vacAs1am1/babA2+/iceA1 and cagA–/vacAs1am1/babA2+/iceA1, regardless of any family history of gastric cancer or MALT lymphoma. The very virulent genotype cagA+/vacAs1am1/babA2+/iceA1 prevailed in the studied patients with functional dyspepsia. Our results provide information about the prevalence of four of the more important virulent factors and constitute new evidence on the prevalence of the most virulent H. pylori genotype in patients with functional dyspepsia.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

61

Numer

1

Opis fizyczny

p.33-40,ref.

Twórcy

  • Laboratorio de Microbiologia Especial, Grupo de Enfermedades Infecciosas, Departamento de Microbiologia, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota, D.C. Colombia
autor

Bibliografia

  • Altschul S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic AcidsRes. 25: 3389–3402.
  • Amann R.I., L. Krumholz and D.A. Stahl. 1990. Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762–770.
  • Ariesyady H.D., T. Ito and S. Okabe. 2007. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 41: 1554–1568.
  • Avrahami S., W. Liesack and R. Conrad. 2003. E{ects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5: 691–705.
  • Chae K.J., T. Rameshwar, A. Jang, S.H. Kim and I.S. Kim. 2008. Analysis of the nitrifying bacterial community in BioCube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes. J. Environ. Manage. 88: 1426–1435.
  • Cydzik-Kwiatkowska A. and I. Wojnowska-Baryła. 2008. The impact of organic carbon and ammonia load in wastewater on ammonia-oxidizing bacteria community in activated sludge. Pol. J. Microbiol. 57(3): 241–248.
  • Daims H., U. Purkhold, L. Bjerrum, E. Arnold, P.A. Wilderer and M. Wagner. 2001. Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci. Technol. 43: 9–18.
  • Dionisi H.M., A.C. Layton, G. Harms, I.R. Gregory, K.G. Robinson and G.S. Sayler. 2002. Quantification of Nitrosomonas oligotropha- like ammonia-oxidizing bacteria and Nitrospira spp. From full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68: 245–253.
  • Dolzani L., E. Tonin, C. Lagatolla, L. Prandin and C. Monti-Bragadin. 1995. Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S–23S rRNA intergenic-spacer sequences. J. Clin. Microbiol. 33: 1108–1113.
  • Ebie Y., M. Matsumura, N. Noda, S. Tsuneda, A. Hirata and Y. Inamori. 2002. Community analysis of nitrifying bacteria in an advanced and compact Gappei-Johkasou by FISH and PCR-DGGE. Water Sci. Technol. 46: 105–111.
  • Focht D.D. and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Adv. Microb. Ecol. 1: 135–214.
  • Gieseke A., U. Purkhold, M. Wagner, R. Amann and A. Schramm. 2001. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 67: 1351–1362.
  • Hall S.J., J. Keller and L.L. Blackall. 2003. Microbial quantification in activated sludge: the hits and misses. Water Sci. Technol. 48: 121–126.
  • Juretschko S., A. Lo, A. Lehner and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle 16S rRNA approach. Syst. Appl. Microbiol. 25: 84–99.
  • Kuo D.H.W., K.G. Robinson, A.C. Layton, A.J. Meyers and G.S. Sayler. 2006. Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ. Eng. Sci. 23(3): 507–520.
  • LaPara T.M., C.H. Nakatsu, L.M. Pantea and J.E. Alleman. 2002. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res. 36: 638–646.
  • LaPara T.M. and S. Ghosh. 2006. Population dynamics of the ammonia-oxidizing bacteria in a full-scale municipal wastewater treatment facility. Environ. Eng. Sci. 23: 309–319.
  • Lazarova V., D. Bellahcen, D. Rybacki, B. Rittmann and J. Manem. 1998. Population dynamics and biofilm composition in a new threephase circulation bed reactor. Water Sci. Tech. 37: 149–158.
  • Limpiyakorn T., F. Kurisu and O. Yagi. 2006. Quantification of ammonia-oxidizing bacteria populations in full-scale sewage activated sludge systems and assessment of system variables a{ecting their performance. Water Sci. Technol. 54: 91–99.
  • Metcalf and Eddy Inc. 1991. Design of Facilities for the Biological Treatment of Wastewater, pp: 529–662. In: Tchobanoglous G. and F.L. Burton (eds.), Wastewater Engineering: Treatment, Disposal and Reuse, 3rd ed., McGraw Hill Inc.
  • Mobarry B.K., M. Wagner, V. Urbain, B.E. Rittmann and D.A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156–2162.
  • Nei M. and W.H. Li. 1979. Mathematical model for studying genetic variation on terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76, USA, pp. 5269.
  • Nicolaisen M.H. and N.B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Meth. 50: 189–203.
  • Nogueira R., L.F. Melo, U. Purkhold, S. Wuertz and M. Wagner. 2002. Nitrifying and heterotrophic population dynamics in biofilm Impact of technological parameters o 1 n bacteria in activated sludge 49 reactors: effects of hydraulic retention time and the presence of organic carbon. Water Res. 36: 469–481.
  • Okabe S., H. Satoh and Y. Watanabe. 1999. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65: 3182–3191.
  • Onuki M., H. Satoh, T. Mino and T. Matsuo. 2000. Application of molecular methods to microbial community analysis of activated sludge. Water Sci. Tech. 42: 17–22.
  • Rittmann E. and V.L. Snoeyink. 1984. Achieving biologically stable drinking water. J. Am. Water Works Ass. 76: 106–114.
  • Rittmann B.E., C.S. Laspidou, J. Flax, D.A. Stahl, V. Urbain, H. Harduin, J.J. van der Waarde, B. Geurkink, M.J.C. Henssen, H. Brouwer and others. 1999. Molecular and modeling analyses of the structure and function of nitrifying activated sludge. Water Sci. Technol. 39: 51–59.
  • Rotthauwe J.-H., K.-P. Witzel and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704– 4712.
  • Rowan A.K., J.R. Snape, D. Fearnside, M.R. Barer, T.P. Curtis and I.M. Head. 2003. Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195–206.
  • Saleem M., A.A. Bukhari and M.H. Al-Malack. 2003. Seasonal variations in the bacterial population in an activated sludge system. J. Environ. Eng. Sci. 2: 155–162.
  • S. Siripong and B.E. Rittmann. 2007. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 41: 1110–1120.
  • Stanisz A. 2000. Bases of statistics for science. Ch. 21: Analisis of correlation (in Polish). Med. Praktyczna 10: 176–181.
  • Xia S., J. Li and R. Wang. 2008. Nitrogen removal performance and microbial community structure dynamics response to carbonnitrogen ratio in a compact suspended carrier biofilm reactor. Ecol. Eng. 32: 256–262.
  • Zhao Y., A. Wang, N. Ren and Y. Zhao. 2008. Microbial community structure in different wastewater treatment processes characterized by single-strand conformation polymorphism (SSCP) technique. Front. Environ. Sci. Eng. China 2: 116–121.
  • Internet sources: www.oligo.ibb.waw.plwww.pkn.pl

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-558b9ada-18be-4ab4-892b-b6b25e2d6f42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.