PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 03 |

Tytuł artykułu

Molekularne mechanizmy metastazy nowotworowej - wybrane zagadnienia

Autorzy

Warianty tytułu

EN
Molecular mechanisms of neoplastic metastasis - selected issues

Języki publikacji

PL

Abstrakty

EN
A malignant tumor predominantly consists of proliferating cells, a smaller percentage of the cells in the resting phase G0 and G1, as well as necrotic and/or apoptotic cells. It is a heterogeneous structure with the ability to metastasize which includes the acquisition of additional genetic mutation, migration ability or the production of MMP (metalloproteinase). Unfortunately, at present it is impossible to find tissue cells with clearly specify features of metastasis in the tumor, and therefore it requires more intense research in this direction. This paper describes the stages of the cancer cell migration from a place of origin, the effect of which is to create metastatic deposits. The metastatic process is compared to the adoption of “seedlings in the soil” (seed and soil). Complementary adhesion molecules are expressed in both the metastatic cells as well as in the target organ cells. The stroma of an organ decides whether cancer cells are adopted. It should be characterized by the absence of proteinase inhibitors, the presence of various growth factors and the ability of neoangiogenesis. Each metastasis can be a point of departure for further metastasis. It has been also describes a number of metastatic mechanisms, i.e. involved in the process of chemokines, adhesion molecules, neoangiogenesis, types of Lewis antigens a, b, x, y, cancer stem cells (CSC), and presents the phenomenon of transmigration through the blood vessels, which is similar to the migration of granulocytes in the system. Tumor cell clones with a high metastatic potential differ from low metastatic counterparts with regard to pheno- and genotypic features. This means that not all of the malignant tumors have the same invasiveness or metastatic potential. Therefore, special attention was paid to the role of genes in metastatic neoplasia (genes: SDF1, BRMS1, MET, IAP-4, KAI-1, KISS-1, NM-23-H1, UGT8, alpha Klotho). The newly discovered intercellular connections are also mentioned, i.e. membrane nanotubes (tunnel – TNTs), enabling the mitochondrial transport between cells, mtDNA transfer and its mutation, as well as mediate in the phenomenon of MDR (multidrug resistance), i.e. removal the xenobiotics from the cells (such as cytostatics), which explains the failure of cancer chemotherapy. Unfortunately recognition of all metastatic molecular mechanisms has not been fully explained to date.

Wydawca

-

Rocznik

Tom

70

Numer

03

Opis fizyczny

s.136-146,rys.,bibliogr.

Twórcy

autor
  • Zakład Patomorfologii i Weterynarii Sądowej, Katedra Patologii, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy we Wrocławiu, ul.Norwida 31, 50-345 Wrocław

Bibliografia

  • 1. Altman M. K., Nguyen D. T., Patel S. B., Fambrough J. M., Beeddle A. M., Hardman W. J., Muroh M. M.: Regulator of G-protein signaling 5 reduces Hey A8 ovarian cancer cell proliferation and extends survival in a murine tumor model. Biochem. Res. In. 2012, 6, 51-59.
  • 2. Balkwill F.: Cancer and the chemokine network. Nat. Rev. Cancer 2004, 4, 540-547.
  • 3. Blaching T. M., Wilson H., Argyle D. J.: Is cancer a stem cell disease? Theory, evidence and implications. Vet. Comp. Oncol. 2007, 5, 75-89.
  • 4. Bleicher R. J., Sullivan M. J., Ciocca V., Ciocca R. M., Perkins L. A., Ross E., Li T., Patchefsky A. S., Sigurdson E. R., Joseph N. E., Sesa L., Morrow M.: A prospective feasibility trial to determine the significance of the sentinel node gradient in breast cancer: a predictir of nodal metastasis location. Cancer 2008, 113, 3100-3107.
  • 5. Cianga C., Cianga P., Cozma L., Diaconu C., Carasevici E.: Detection of lymph nodes micrometastases in breast carcinoma using immunochhistochemistry for cytokeratin 8. Rev. Med. Chir. Soc. Med. Nat. 2002, 106, 720-724.
  • 6. Cohen C., Alazraki N., Styblo T., Waldrop S. M., Grant S. F., Larsen T.: Immunohistochemical evaluation of sentinel lymph nodes in breast carcinoma patiensts. Appl. Immunohistochem. Mol. Morphol. 2002, 10, 296-300.
  • 7. Cooper C. A., Chang C. H., Gendernalik J. D.: Stromal factors involved in prostate carcinoma metastasies to bone. Cancer 2003, 97, 739-747.
  • 8. Djonov V., Cresto N., Aebersold D. M.: Tumor cell specific expression of MMP-2 correlates with tumor vascularisation in breast cancer. Int. J. Oncol. 2002, 21, 25-30.
  • 9. Domagała W., Chosia M., Urasińska E.: Podstawy patologii. PZWL, Warszawa 2010.
  • 10. Edvards D. R., Handsley M. M., Pennington C. J.: The ADAM metalloproteinases. Mol. Aspects Med. 2008, 29, 258-289.
  • 11. Ferrara N., Kerbel R. S.: Angiogenesis as a therapeutic target. Nature 2005, 438, 967-974.
  • 12. Fidler I. J.: The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453-458.
  • 13. Folkman J.: Angiogenesis: a organized principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6, 273-286.
  • 14. Gruszewska E., Chrostek L.: Zaburzenia glikozylacji w chorobach nowotworowych. Pol. Merk. Lek. 2013, 35, 58-61.
  • 15. Hanahan D., Weiberg R. A.: Hallmarks of cancer: the next generation. Cell 2011, 144, 646-674.
  • 16. He Y., Wu J., Dressman D. C., Iacabuzio-Donahun C. M., Markowitz S. D., Veleculsen V. E., Diaz L. A., Kinzler K. W., Vogelstein B., Papadopoulos N.: Heteroplasmic mitochondrial DNA mutations in normal and tumor cell. Nature 2010, 464, 610-614.
  • 17. Kaczmarek R.: Zmiany ekspresji antygenów grupowych układu Lewis w komórkach nowotworowych. Post. Hig. Med. Doświad. 2010, 64, 87-99.
  • 18. Kannagi R., Izawa M., Koike T., Miyazaki K., Kimura N.: Carbohydratemediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004, 94, 377-384.
  • 19. Kaplan R. N., Rafii S., Lyden D.: Preparing the “soil”: the premetastatic niche. Cancer Res. 2006, 66, 11089-11093.
  • 20. Klimek R., Wicherek Ł., Gałązka K.: Cycle dependent expression of endometrial metallothionein. Neuroendocrinology Letters 2005, 26, 663-666.
  • 21. Kruś S., Skrzypek-Fakhoury E.: Patomorfologia kliniczna. PZWL, Warszawa 2007.
  • 22. Kucia M., Jankowski K., Reca R.: CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 2004, 35, 233-242.
  • 23. Kumar V., Cotran R. S., Robbins S. L.: Robbins Patologia. Elsevier Urban&Partner, Wrocław 2007.
  • 24. Laing K. J., Scombes C. J.: Chemokines. Dev. Comp. Immunol. 2004, 28, 443-460.
  • 25. Liguang Z., Peishu L., Hongluan M.: Survivin expression in ovarian cancer. Exp. Oncol. 2007, 29, 121-125.
  • 26. Madej J. A.: Badania nad wpływem wybranych czynników egzogennych w patomechanizmie białaczek limfatycznych u myszy. Praca hab. Zeszyty Nauk. AR we Wrocławiu 1982, 33, 1-46.
  • 27. Messager S.: Kisspeptids and its receptor: new gatekeepers of puberty. J. Nueroendocrinology 2005, 17, 686-688.
  • 28. Murphy P. M.: Chemokines and the molecular basis of metastasis. N. Engl. J. Med. 2001, 345, 833-841.
  • 29. Nowak M., Dzięgiel P., Madej J., Ugorski M.: Ceramide galactosyltransferease (UGT8) as a molecular marker of canice mammary tumor malignancy. Folia Histochem. Cytobiol. 2013, 51, 164-167.
  • 30. Nowak M., Madej J. A., Dzięgiel P., Łopuszyński A., Rodo A., Ugorski M.: Tumor-associated carbohydrate antigens: sialyl Lea and T/Tn antigens in canine mammary tumors. Vet. Pathol. 2009, 46, 222-226.
  • 31. Papaoiconomou E., Msaouel P., Makui A.: The role of kisspeptin/GPR 54 in the reproductive system. In Vivo 2011, 25, 343-354.
  • 32. Radzikowski C., Opolski A., Wietrzyk J.: Postępy w badaniach procesu wzrostu inwazyjnego i przerzutowaniu. J. Oncology Suppl. 2002, 52, 57-65.
  • 33. Silini A., Ghilardi C., Figini S., Sangalli F., Fruscio R., Dahse R., Pedley R. B., Giavazzi R., Bani M.: Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculate elicited and sustained by the tumor’s proangiogenic microenvironment. Cell Mol. Life Sci. 2012, 7, 1167-1178.
  • 34. St Croix B., Rago C., Velcukscu V., Traverso G., Romans K. E., Montgomery E., Lal A., Riggins G. J., Lengauer C., Vogelstein B., Kinzler K. W.: Gene expressed in human tumor endothelium. Science 2000, 289, 1197-1201.
  • 35. Streeg P. S.: Perspectives on classic article: metastasis suppressor genes. J. Natl. Cancer Inst. 2004, 96, 6-14.
  • 36. Subramanian C., Cotter M. A., Robertson S.: Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: A molecular link to cancer metastasis. Nature Med. 2001, 17, 350-355.
  • 37. Szymczak A., Forma E.: Struktura i funkcja białka Klotho. Folia Med. Lodz. 2012, 39, 151-187.
  • 38. Takaoka A., Hinoda Y., Satoh S.: Suppression of invasive properties of colon cancer cell by a metastasis suppressor KAI1 gene. Oncogene 1998, 16, 1443-1453.
  • 39. Ugorski M., Laskowska A.: Sialyl Lewis9: a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim. Pol. 2002, 49, 303-311.
  • 40. Veranic P., Lokar M., Schultz G. J., Waghuber J., Wieser S., Hagerstrand H.: Different typus of cell to cell connections mediated by nanotubular structures. Biophys. J. 2008, 95, 4416-4425.
  • 41. Vineis P., Schatzakin A., Potter J. D.: Models of cancerogenesis: an overview. Carcinogenesis 2011, 31, 1703-1709.
  • 42. Vogelstein B., Kinzler K. W.: Cancer genes and the pathways they control. Nat. Med. 2004, 10, 789-799.
  • 43. Wang P.: Altered sialylation and its roles in gynecologic cancers. J. Cancer Mol. 2006, 2, 107-116.
  • 44. Walz G., Aruffo A., Kolanus W., Bevilequa M., Seed B.: Recognition by ELAM-1 of the sialyl-Lex determinatet on myeloid and tumor cells. Science 1990, 250, 1132-1135.
  • 45. Webb C. P., van de Woude G. F.: Genes that regulate metastasis and angiogenesis. J. Neurooncology 2000, 10, 705-711.
  • 46. Withrow S. J., Vail D. M., Page R. L.: Small animal clinical oncology. 5th ed. Elsevier Saunders. St. Louis 2013.
  • 47. Wójcik C.: Znaczenie proteasomów w prezentacji antygenów. Post. Biol. Kom. 1998, 25, 171-192.
  • 48. Xie K., Huang S.: Regulation of cancer metastasis by stress pathways. Clin. Exp. Metastasis 2003, 20, 31-43.
  • 49. Yamazuki J., Baba K., Goto-Koshino Y.: Quantitative assessment of minimal residual disease (MRD) in canine lymphoma by using real-time polymerase chain reaction. Vet. Immunol. Immunopathol. 2008, 126, 321-331.
  • 50. Yang Y. C., Lee Z., Wu C. C.: CXCR4 expression is associated with pelvic lymph node metastasis in cervical adenocarcinoma. Int. J. Gynecol. Cancer 2007, 17, 676-686.
  • 51. Zhang H. Z., Li X. H., Zhang X., Zhang Z. Y., Meng Y. L., Xu S. W., Sheng Y., Zhu Z. L., Cui D. S., Huang L. X., Yan B. Y., Sum X. F.: PINCH protein expression in normal endometrium, atypical endometrial hyperplasia and endometroid endometrial carcinoma. Chemiotherapy 2010, 4, 291-297.
  • 52. Zhang P., Zheng F.: “PPAR” – gamma and aging: one linke through Klotho. Kidney Inst. 2008, 10, 702-704.
  • 53. Zhang S., Lin Q. D., Di W.: Suppression of human ovarian carcinoma metastasis by the metastasis – suppressor gene BRMS 1. Int. J. Gynecol. Cancer 2006, 16, 522-531.
  • 54. Zhang S., Shi Y., Yen Y., Brow J., Ta T. Q., Le A. D.: A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamos cell carcinoma confer resistence to chemiotherapy. Cancer Letters 2009, 2, 151-160.
  • 55. Zhao F. L., Guo W.: Expresssion of stromal derived factor-1 (5DF-1) and chemokine receptor (CXCR4) in bone metastasis of renal carcinoma. Mol. Biol. Rep. 2011, 38, 1039-1045.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-55365ef7-b900-4a9c-a958-78160748c59e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.