EN
Small heat shock proteins (sHSPs) are the critical components of responses to various environmental stresses. However, few have been functionally characterised in Primula. In this study, we cloned a sHSP gene, PfHSP17.1, which is highly up-regulated in the leaves of Primula forrestii exposed to thermal stress (42 °C for 2 h). Sequence alignment and phylogenetic analysis indicated that PfHSP17.1 is a member of the plant cytosolic class I sHSPs. This gene was basally and ubiquitously expressed in different plant organs. The expression of PfHSP17.1 was also triggered remarkably by salt, drought and oxidative stress conditions but was only slightly induced by abscisic acid. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.1 displayed increased thermotolerance and higher resistance to salt and drought compared with wild-type plants. These results highlight the important role that PfHSP17.1 plays in diverse physiological and biochemical processes related to adverse conditions.