PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |

Tytuł artykułu

Cloning and characterisation of a Primula heat shock protein gene, PfHSP17.1, which confers heat, salt and drought tolerance in transgenic Arabidopsis thaliana

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Small heat shock proteins (sHSPs) are the critical components of responses to various environmental stresses. However, few have been functionally characterised in Primula. In this study, we cloned a sHSP gene, PfHSP17.1, which is highly up-regulated in the leaves of Primula forrestii exposed to thermal stress (42 °C for 2 h). Sequence alignment and phylogenetic analysis indicated that PfHSP17.1 is a member of the plant cytosolic class I sHSPs. This gene was basally and ubiquitously expressed in different plant organs. The expression of PfHSP17.1 was also triggered remarkably by salt, drought and oxidative stress conditions but was only slightly induced by abscisic acid. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.1 displayed increased thermotolerance and higher resistance to salt and drought compared with wild-type plants. These results highlight the important role that PfHSP17.1 plays in diverse physiological and biochemical processes related to adverse conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

11

Opis fizyczny

p.3191-3200,fig.,ref.

Twórcy

autor
  • Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing 100083, China
autor
  • Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing 100083, China
autor
  • Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing 100083, China
autor
  • Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing 100083, China
autor
  • Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing 100083, China

Bibliografia

  • Ahn YJ, Zimmerman JL (2006) Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ 29:95–104
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Campbell JL, Klueva NY, Zheng HG, Nieto-Sotelo J, Ho TD, Nguyen HT (2001) Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim Biophys Acta 1517:270–277
  • Charng Y, Liu H, Liu N, Hsu F, Ko S (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305
  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol 135:432–443
  • Dhindsa RA, Plumb-Dhindsa P, Thorpe TA (1981) Leaf Senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 126:93–101
  • Gao C, Jiang B, Wang Y, Liu G, Yang C (2012) Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast. Mol Biol Rep 39:4889–4897
  • Helm KW, Schmeits J, Vierling E (1995) An endomembranelocalized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107:287–288
  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397
  • Hu W, Zhang Q, Pan H, Dong L (2010) Preliminary study on physiological indexes of heat-resistance of primula. Chin Agric Sci Bull 26:158–163
  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059
  • Lenne C, Block MA, Garin J, Douce R (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311:805–813
  • Lindquist S, Craig E (1988) The heat shock proteins. Annu Rev Genet 22:631–677
  • Ma CL, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60
  • Mahmood T, Safdar W, Abbasi BH, Naqvi SMS (2010) An overview on the small heat shock proteins. Afr J Biotechnol 9:927–949
  • Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2007) Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol 145:1588–1599
  • Murakami T, Mastuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175
  • Narberhaus F (2002) a-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93
  • Nieto-Sotelo J, Kannan KB, Martinez LM, Segal C (1999) Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene 230:187–195
  • Parsell DA, Kowal A, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478
  • Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol 151:241–252
  • Richards AJ (1993) Primula. B. T. Batsford, London, p 299
  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268
  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334
  • Sharom M, Willemot C, Thompson JE (1994) Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiol 105:305–308
  • Song L, Jiang Y, Zhao H, Hou M (2012) Acquired thermotolerance in plants. Plant Cell Tiss Organ Cult 111:265–276
  • Sun W, Bernard C, van de Cotte B, van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415
  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620
  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252
  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338
  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Overexpression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plant 54:105–111
  • Zhang XX, Liu SK, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143
  • Zhou YL, Chen HH, Chu P, Li Y, Tan B, Ding Y, Tsang EWT, Jiang LW, Wu KQ, Huang SZ (2012) NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31:379–389
  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-551e3418-926e-4ffd-ac5b-5ebe737bf8be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.