PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 4 |

Tytuł artykułu

Immunohistochemical characteristics of porcine intrahepatic nerves under physiological conditions and after bisphenol A administration

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The neurochemistry of hepatic nerve fibres was investigated in large animal models after dietary exposure to the endocrine disrupting compound known as bisphenol A (BPA). Materials and methods: Antibodies against neuronal peptides were used to study changes in hepatic nerve fibres after exposure to BPA at varying concentrations using standard immunofluorescence techniques. The neuropeptides investigated were substance P (SP), galanin (GAL), pituitary adenylate cyclase activating polypeptide (PACAP), calcitonin gene regulated peptide (CGRP) and cocaine and amphetamine regulated transcript (CART). Immunoreactive nerve fibres were counted in multiple sections of the liver and among multiple animals at varying exposure levels. The data was pooled and presented as mean ± standard error of the mean. Results: It was found that all of the nerve fibres investigated showed upregulation of these neural markers after BPA exposure, even at exposure levels currently considered to be safe. These results show very dramatic increases in nerve fibres containing the above-mentioned neuropeptides and the altered neurochemical levels may be causing a range of pathophysiological states if the trend of over- -expression is extrapolated to developing humans. Conclusions: This may have serious implications for children and young adults who are exposed to this very common plastic polymer, if the same trends are occurring in humans. (Folia Morphol 2018; 77, 4: 620–628)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

4

Opis fizyczny

p.620–628,fig.,ref.

Twórcy

autor
  • Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Zolnierska 14C, 10–561 Olsztyn, Poland
autor
  • Department of Internal Medicine and Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Zolnierska 14C, 10–561 Olsztyn, Poland
autor
  • Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
  • Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, of Warmia and Mazury, Olsztyn, Poland
  • Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
  • Laboratory of Regenerative Medicine. University of Warmia and Mazury, Olsztyn, Poland
  • Foundation for Nerve Cell Regeneration, Olsztyn, Poland

Bibliografia

  • 1. Akash G, Kaniganti T, Tiwari NK, et al. Differential distribution and energy status-dependent regulation of the four CART neuropeptide genes in the zebrafish brain. J Comp Neurol. 2014; 522(10): 2266–2285, doi: 10.1002/cne.23532, indexed in Pubmed: 24374761.
  • 2. Barberi M, Muciaccia B, Morelli M, et al. Expression localisation and functional activity of pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal polypeptide and their receptors in mouse ovary. Reproduction. 2007; 134(2): 281–292, doi: 10.1530/rep-07-0051.
  • 3. Barsiene J, Syvokiene J, Bjornstad A. Induction of micronuclei and other nuclear abnormalities in mussels exposed to bisphenol A, diallyl phthalate and tetrabromodiphenyl ether-47. Aquat Toxicol. 2006; 78 Suppl 1: S105–S108, doi: 10.1016/j.aquatox.2006.02.023, indexed in Pubmed: 16616789.
  • 4. Bassols A, Costa C, Eckersall PD, et al. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin Appl. 2014; 8(9-10): 715–731, doi: 10.1002/prca.201300099, indexed in Pubmed: 25092613.
  • 5. Bharne AP, Borkar CD, Subhedar NK, et al. Differential expression of CART in feeding and reward circuits in binge eating rat model. Behav Brain Res. 2015; 291: 219–231, doi: 10.1016/j.bbr.2015.05.030, indexed in Pubmed: 26008155.
  • 6. Becerra V, Odermatt J. Detection and quantification of traces of bisphenol A and bisphenol S in paper samples using analytical pyrolysis-GC/MS. Analyst. 2012; 137(9): 2250–2259, doi: 10.1039/c2an15961a, indexed in Pubmed: 22428152.
  • 7. Beronius A, Rudén C, Håkansson H, et al. Risk to all or none? Reproduct Toxicol. 2010; 29(2): 132–146, doi: 10.1016/j.reprotox.2009.11.007, indexed in Pubmed: 19931376.
  • 8. Braun JM, Yolton K, Dietrich KN, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009; 117(12): 1945–1952, doi: 10.1289/ehp.0900979, indexed in Pubmed: 20049216.
  • 9. Braun JM, Kalkbrenner AE, Calafat AM, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011; 128(5): 873–882, doi: 10.1542/peds.2011-1335, indexed in Pubmed: 22025598.
  • 10. Brown DR, Timmermans JP. Lessons from the porcine enteric nervous system. Neurogastroenterol Motil. 2004; 16 Suppl 1: 50–54, doi: 10.1111/j.1743-3150.2004.00475.x, indexed in Pubmed: 15066005.
  • 11. Bulc M, Gonkowski S, Całka J. Expression of Cocaine and Amphetamine Regulated Transcript (CART) in the Porcine Intramural Neurons of Stomach in the Course of Experimentally Induced Diabetes Mellitus. J Mol Neurosci. 2015; 57(3): 376–385, doi: 10.1007/s12031-015-0618-2, indexed in Pubmed: 26266486.
  • 12. Carolan E, Hogan AE, Corrigan M, et al. The impact of childhood obesity on inflammation, innate immune cell frequency, and metabolic microRNA expression. J Clin Endocrinol Metab. 2014; 99(3): E474–E478, doi: 10.1210/jc.2013-3529, indexed in Pubmed: 24423308.
  • 13. Celi F, Bini V, Papi F, et al. Circulating acylated and total ghrelin and galanin in children with insulin-treated type 1 diabetes: relationship to insulin therapy, metabolic control and pubertal development. Clin Endocrinol (Oxf). 2005; 63(2): 139–145, doi: 10.1111/j.1365-2265.2005.02313.x, indexed in Pubmed: 16060906.
  • 14. Dabrowska H, Kopko O, Lehtonen KK, et al. An integrated assessment of pollution and biological effects in flounder, mussels and sediment in the southern Baltic Sea coastal area. Environ Sci Pollut Res Int. 2017; 24(4): 3626–3639, doi: 10.1007/s11356-016-8117-8, indexed in Pubmed: 27885579.
  • 15. DeLeón M, Coveñas R, Chadi G, et al. Subpopulations of primary sensory neurons show coexistence of neuropeptides and glucocorticoid receptors in the rat spinal and trigeminal ganglia. Brain Res. 1994; 636(2): 338–342, indexed in Pubmed: 8012818.
  • 16. Duong CN, Ra JS, Cho J, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere. 2010; 78(3): 286–293, doi: 10.1016/j.chemosphere.2009.10.048, indexed in Pubmed: 19931116.
  • 17. Gonkowski S, Kamińska B, Landowski P, et al. Immunohistochemical distribution of cocaine- and amphetamine-regulated transcript peptide - like immunoreactive (CART-LI) nerve fibers and various degree of co-localization with other neuronal factors in the circular muscle layer of human descending colon. Histol Histopathol. 2013; 28(7): 851–858, doi: 10.14670/HH-28.851, indexed in Pubmed: 23277430.
  • 18. Gonkowski S, Rowniak M, Wojtkiewicz J. Zinc Transporter 3 (ZnT3) in the Enteric Nervous System of the Porcine Ileum in Physiological Conditions and during Experimental Inflammation. Int J Mol Sci. 2017; 18(2), doi: 10.3390/ijms18020338, indexed in Pubmed: 28178198.
  • 19. Gonkowski S, Burlinski P, Calka J. Proliferative enteropathy (PE): Induced changes in galanin-like immunoreactivity in the enteric nervous system of the porcine distal colon. Acta Veterinaria. 2009; 59(4): 321–330, doi: 10.2298/avb0904321g.
  • 20. Guo J, Zhao MH, Shin KT, et al. The possible molecular mechanisms of bisphenol A action on porcine early embryonic development. Sci Rep. 2017; 7(1): 8632, doi: 10.1038/s41598-017-09282-2, indexed in Pubmed: 28819136.
  • 21. Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry. 2015; 78(3): 167–177, doi: 10.1016/j.biopsych.2014.12.003, indexed in Pubmed: 25636177.
  • 22. Hashimoto H. [Psychiatric implications of PACAP signaling pathway]. Nihon Shinkei Seishin Yakurigaku Zasshi. 2012; 32(3): 133–137, indexed in Pubmed: 22834101.
  • 23. Hökfelt T, Kellerth JO, Nilsson G, et al. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 1975; 100(2): 235–252, indexed in Pubmed: 1104079.
  • 24. Itoh K, Yaoi T, Fushiki S. Bisphenol A, an endocrine-disrupting chemical, and brain development. Neuropathology. 2012; 32(4): 447–457, doi: 10.1111/j.1440-1789.2011.01287.x, indexed in Pubmed: 22239237.
  • 25. Jensen KJ, Alpini G, Glaser S. Hepatic nervous system and neurobiology of the liver. Compr Physiol. 2013; 3(2): 655–665, doi: 10.1002/cphy.c120018, indexed in Pubmed: 23720325.
  • 26. Kinch CD, Ibhazehiebo K, Jeong JH, et al. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc Natl Acad Sci U S A. 2015; 112(5): 1475–1480, doi: 10.1073/pnas.1417731112, indexed in Pubmed: 25583509.
  • 27. Kitraki E, Nalvarte I, Alavian-Ghavanini A, et al. Effects of pre- and post-natal exposure to bisphenol A on the stress system. Endocrine Disruptors. 2016; 4(1): e1184775, doi: 10.1080/23273747.2016.1184775.
  • 28. Kolšek K, Mavri J, Sollner Dolenc M. Reactivity of bisphenol A-3,4-quinone with DNA. A quantum chemical study. Toxicol In Vitro. 2012; 26(1): 102–106, doi: 10.1016/j.tiv.2011.11.003, indexed in Pubmed: 22120823.
  • 29. Kozłowska A, Wojtkiewicz J, Majewski M, et al. Localization of substance P, calcitonin gene related peptide and galanin in the nerve fibers of porcine cystic ovaries. Folia Histochem Cytobiol. 2011; 49(4): 622–630, indexed in Pubmed: 22252756.
  • 30. Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides. 2011; 32(9): 1972–1978, doi: 10.1016/j.peptides.2011.07.009, indexed in Pubmed: 21801774.
  • 31. Lautt WW. Hepatic nerves: a review of their functions and effects. Can J Physiol Pharmacol. 1980; 58(2): 105–123, indexed in Pubmed: 6991079.
  • 32. Lautt WW. Hepatic circulation: Physiology and pathophysiology. In Colloquium Series on Integrated Systems: Physiology: from Molecule to Function. Morgan & Claypool Life Sciences: San Rafael, CA, USA. 2009; book 1: 83–119.
  • 33. Lian J, De Santis M, He M, et al. Risperidone-induced weight gain and reduced locomotor activity in juvenile female rats: The role of histaminergic and NPY pathways. Pharmacol Res. 2015; 95-96: 20–26, doi: 10.1016/j.phrs.2015.03.004, indexed in Pubmed: 25782398.
  • 34. Litten-Brown JC, Corson AM, Clarke L. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal. 2010; 4(6): 899–920, doi: 10.1017/S1751731110000200, indexed in Pubmed: 22444262.
  • 35. Majewski M, Bossowska A, Gonkowski S, et al. Neither axotomy nor target-tissue inflammation changes the NOSor VIP-synthesis rate in distal bowel-projecting neurons of the porcine inferior mesenteric ganglion (IMG). Folia Histochem Cytobiol. 2002; 40(2): 151–152, indexed in Pubmed: 12056620.
  • 36. Makowska K, Obremski K, Zielonka L, et al. The influence of low doses of zearalenone and T-2 toxin on calcitonin gene related peptide-like immunoreactive (CGRP-LI) neurons in the ENS of the porcine descending colon. Toxins (Basel). 2017; 9(3), doi: 10.3390/toxins9030098, indexed in Pubmed: 28287437.
  • 37. McCulloch J, Uddman R, Kingman TA, et al. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci U S A. 1986; 83(15): 5731–5735, doi: 10.1073/pnas.83.15.5731, indexed in Pubmed: 3488550.
  • 38. Meisner H, Carter JR. Regulation of lipolysis in adipose tissue. Horiz Biochem Biophys. 1977; 4: 91–129, indexed in Pubmed: 202557.
  • 39. Mizuno Y, Kondo K, Terashima Y, et al. Anorectic effect of pituitary adenylate cyclase activating polypeptide (PACAP) in rats: lack of evidence for involvement of hypothalamic neuropeptide gene expression. J Neuroendocrinol. 1998; 10(8): 611–616, indexed in Pubmed: 9725713.
  • 40. Morley JE, Horowitz M, Morley PM, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) reduces food intake in mice. Peptides. 1992; 13(6): 1133–1135, indexed in Pubmed: 1494495.
  • 41. Mueller K, Sacher J, Arelin K, et al. Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiatry. 2012; 2: e200, doi: 10.1038/tp.2012.121, indexed in Pubmed: 23212584.
  • 42. O’Connor TM, O’Connell J, O’Brien DI, et al. The role of substance P in inflammatory disease. J Cell Physiol. 2004; 201(2): 167–180, doi: 10.1002/jcp.20061, indexed in Pubmed: 15334652.
  • 43. Palus K, Rytel L. Co-localisation of cocaine- and amphetamine-regulated transcript peptide and vasoactive intestinal polypeptide in the myenteric plexus of the porcine transverse colon. Folia Morphol. 2013; 72(4): 328–332, indexed in Pubmed: 24402755.
  • 44. Michaela P, Mária K, Silvia H, et al. Bisphenol A differently inhibits CaV3.1, CaV3.2 and CaV3.3 calcium channels. Arch Exp Pathol Pharmakol. 2013; 387(2): 153–163, doi: 10.1007/s00210-013-0932-6.
  • 45. Rachoń D. Endocrine disrupting chemicals (EDCs) and female cancer: Informing the patients. Rev Endocr Metab Disord. 2015; 16(4): 359–364, doi: 10.1007/s11154-016-9332-9, indexed in Pubmed: 26831296.
  • 46. Reif DM, Martin MT, Tan SW, et al. Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ Health Perspect. 2010; 118(12): 1714–1720, doi: 10.1289/ehp.1002180, indexed in Pubmed: 20826373.
  • 47. Rękawek W, Sobiech P, Gonkowski S, et al. Distribution and chemical coding patterns of cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) neurons in the enteric nervous system of the porcine stomach cardia. Pol J Vet Sci. 2015; 18(3): 515–522, doi: 10.1515/pjvs-2015-0067, indexed in Pubmed: 26618583.
  • 48. Jovanovic T, Norrholm SD, Davis J, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011; 470(7335): 492–497, doi: 10.1038/nature09856, indexed in Pubmed: 21350482.
  • 49. Sandoval-Alzate HF, Agudelo-Zapata Y, González-Clavijo AM, et al. Serum galanin levels in young healthy lean and obese non-diabetic men during an oral glucose tolerance test. Sci Rep. 2016; 6: 31661, doi: 10.1038/srep31661, indexed in Pubmed: 27550417.
  • 50. Schwarz MJ, Ackenheil M. The role of substance P in depression: therapeutic implications. Dialogues Clin Neurosci. 2002; 4(1): 21–29, indexed in Pubmed: 22033776.
  • 51. Simoneau C, Valzacchi S, Morkunas V, et al. Comparison of migration from polyethersulphone and polycarbonate baby bottles. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011; 28(12): 1763–1768, doi: 10.1080/19440049.2011.604644, indexed in Pubmed: 21988286.
  • 52. Surendran S, Kondapaka SB. Altered expression of neuronal nitric oxide synthase in the duodenum longitudinal muscle-myenteric plexus of obesity induced diabetes mouse: implications on enteric neurodegeneration. Biochem Biophys Res Commun. 2005; 338(2): 919–922, doi: 10.1016/j.bbrc.2005.10.039, indexed in Pubmed: 16256069.
  • 53. Taborsky GJ, Dunning BE, Havel PJ, et al. The canine sympathetic neuropeptide galanin: a neurotransmitter in pancreas, a neuromodulator in liver. Horm Metab Res. 1999; 31(5): 351–354, doi: 10.1055/s-2007-978752, indexed in Pubmed: 10422734.
  • 54. Trasande L, Attina TM, Blustein J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA. 2012; 308(11): 1113–1121, doi: 10.1001/2012.jama.11461, indexed in Pubmed: 22990270.
  • 55. Vandenberg L, Ehrlich S, Belcher S, et al. Low dose effects of bisphenol A. Endocrine Disruptors. 2014; 1(1): e26490, doi: 10.4161/endo.26490.
  • 56. Verma N, Rettenmeier AW, Schmitz-Spanke S. Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics. 2011; 11(4): 776–793, doi: 10.1002/pmic.201000320, indexed in Pubmed: 21229584.
  • 57. Wang Hx, Zhou Y, Tang Cx, et al. Association between bisphenol A exposure and body mass index in Chinese school children: a cross-sectional study. Environ Health. 2012; 11: 79, doi: 10.1186/1476-069X-11-79, indexed in Pubmed: 23083070.
  • 58. Wojtkiewicz J, Gonkowski S, Bladowski M, et al. Characterisation of cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) enteric neurons in the porcine small intestine. Acta Vet Hung. 2012; 60(3): 371–381, doi: 10.1556/AVet.2012.032, indexed in Pubmed: 22903082.
  • 59. Wojtkiewicz J, Makowska K, Bejer-Olenska E, et al. Zinc transporter 3 (Znt3) as an active substance in the enteric nervous system of the porcine esophagus. J Mol Neurosci. 2017; 61(3): 315–324, doi: 10.1007/s12031-016-0854-0, indexed in Pubmed: 27796869.
  • 60. Wojtkiewicz J, Rytel L, Makowska K, et al. Co-localization of zinc transporter 3 (ZnT3) with sensory neuromediators and/or neuromodulators in the enteric nervous system of the porcine esophagus. Biometals. 2017; 30(3): 393–403, doi: 10.1007/s10534-017-0014-1, indexed in Pubmed: 28417221.
  • 61. Zalko D, Soto AM, Canlet C, et al. Bisphenol a exposure disrupts neurotransmitters through modulation of transaminase activity in the brain of rodents. Endocrinology. 2016; 157(5): 1736–1739, doi: 10.1210/en.2016-1207, indexed in Pubmed: 27149041.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54e6999b-c0bc-43fd-8d40-497b68334e70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.