PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1991 | 42 | 1 |

Tytuł artykułu

Myocardial calcium compartmentation and contractile control

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Under the condition of rapid perfusion, the time course of contractile response of single ventricular cells to extracellular calcium (Ca) depletion and repletion identifies „fast” and „slow” cellular Ca pools. ⁴⁵Ca exchange was studied in these cells under the same conditions of on-line rapid perfusion. Four kinetically-defined compartments were distinguished: (1) A „rapid” compartment containing 2.6mmoles Ca/kg dry wt of lanthanum (La) displaceable Ca, t½ < 1 sec.; (2) An „intermediate” compartments) containing 2.1 mmoles, t½ = 3 and 19 sec. Caffeine displaced significant amounts of Ca from this compartment whereas La displaced none; (3) A „slow” compartment containing 1.6 mmoles, t½ = 3.6 min. Addition of inorganic phosphate to the perfusate adds significant amounts of Ca to this compartment; (4) An „inexchangeable” compartment, containing 1.2 mmoles. The „rapid” compartment’s flux is > 300 µmoles Ca/kg wet wt/sec. Its exchange rate indicates that it is the kinetic counterpart of the functionally-defined „fast” pool. Its subcellular locus is undefined. The „intermediate” compartment is best correlated with the „slow” pool and represents Ca in the sarcoplasmic reticulum. The „slow” compartment contains a significant fraction from the mitochondria. The results indicate that > 40% of cellular Ca can turn over within the period of one contraction cycle. These results are consistent with the following sequence: (1) Upon sarcolemmal depolarization, Ca moves through the Ca channel to arrive at the SR and at the myofilaments. (2) Ca induced Ca release occurs via the „feet” at the SR-inner SL region. The Ca diffuses to the myofilaments or is transported across the SL via the Na-Ca exchanger. (3) Ca is pumped into the free or longitudinal SR and diffuses to the cistemae. Ca is pumped across the SL by the SL Ca pump and by the Na-Ca exchanger. (4) Mitochondrial Ca exchange via the Na-Ca exchanger and/or SL Ca pump. (Supported by NHLBI and the Laubisch and Castera Endowments.)

Wydawca

-

Rocznik

Tom

42

Numer

1

Opis fizyczny

p.29-36,fig.,ref.

Twórcy

autor
  • The Departments of Medicine and Physiology and the Cardiovascular Research Laboratory, University of California, Los Angeles School of Medicine, Los Angeles, California 90024-1760, USA

Bibliografia

  • 1. Spurgeon HA, Stem MD, Baartz G. Raffaeli S, Hansford RG, Talo A, Lakatta EG, Capogrossi MC. Simultaneous measurement of Ca²⁺, contraction and potential in cardiac myocytes. Am J Physiol 1990 ; 258: H574-H586.
  • 2. Takamatsu T, Weir WG. Calcium waves in mammalian heart; quantification of origin, magnitude, waveform and velocity. FASEB J 1990; 4: 1519-1525.
  • 3. Williford DJ, Sharma VK, Korth M, Sheu SS. Spatial heterogeneity of intracellular Ca²⁺ concentration in nonbeating guinea pig ventricular myocytes. Circ Res 1990; 66 : 234-241.
  • 4. Callewaert G, Cleeman L, Morad M. Caffeine-induced Ca²⁺ release activates extrusion via Na⁺-Ca²⁺ exchanger in cardiac myocytes. Am J Physiol 1989; 257: C147-C152.
  • 5. Leblanc N. Hume JR. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 1990; 248: 372-376.
  • 6. Campbell DL, Giles W. Calcium currents. In: Calcium and the Heart. GA Langer, Ed, Rąyejri Press, New York, 1990, pp. 27-83.
  • 7. Walsh LG, Tormey JMcD. Cellular compartmentation in ischemic myocardium: indirect analysis by electron probe. Am J Physiol 1988; 24: H929-H936.
  • 8. Wheeler-Clark ES, Tormey JMcD. Electron probe X-ray microanalysis of sarcolemma and junctional sarcoplasmic reticulum in rabbit papillary muscles: low sodium-induced calcium alterations. Circ Res 1987; 60: 246-250.
  • 9. Jorgensen AO, Broderick R, Somlyo AP, Somlyo AV. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: an electron microprobe analysis study. Circ Res 1988; 63: 1060-1069.
  • 10. Huxley AF. Compartmental methods of kinetic analysis. (AK Solomon, Appendix 2). In: Mineral Metabolism. CL Comar, F Bronner, Eds, Academic Press, New York, I960, pp 163- 167.
  • 11. Kuwata JH, Langer GA. Rapid, non-perfusion-limited calcium exchange in cultured neonatal myocardial cells. J Mol Cell Cardiol 1989; 21: 1195-1208.
  • 12. Langer GA, Rich TL, Orner FB. Calcium exchange under non-perfusion limited conditions in rat ventricular cells. Identification of subcellular compartments. Am J Physiol 1990; In press.
  • 13. Rich TL, Langer GA, Klassen MG. Two compartments of coupling calcium in single ventricular cell of rabbits and rats. Am J Physiol 1988; 23: H937-H946.
  • 14. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983; 245: Cl-C14.
  • 15. Pierce GN, Philipson KD, Langer GA. Passive calcium-buffering capacity of a rabbit ventricular homogenate preparation. Am J Physiol 1985; 249: C248-C255.
  • 16. Peeters GA, Kohmoto O, Barry WH. Detection of La³⁺ influx in ventricular cells by indo-1 fluorescence. Am J Physiol 1989; 256: C351-C357.
  • 17. Nagasaki K, Fleischer S. Ryanodine sensitivity of the calcium release channel of sarcoplasmic reticulum. Cell Calcium 1988; 9: 1-7.
  • 18. Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S. Three dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 1989; 338: 167-170.
  • 19. Philipson KD. The cardiac Na⁺-Ca²⁺ exchanger. In: Calcium and the Heart. GA Langer, Ed, Raven Press, New York, 1990, pp 85-108.
  • 20. Gruver CL, Katz AM, Messineo FC. Canine cardiac sarcolemmal vesicles demonstrate rapid initial Na⁺-Ca² exchange activity. Circ Res 1990; 66: 1171-1177.
  • 21. Tibbits GF, Sasaki M, Ikeda M, Shimada K, Tsuruhara T, Nagatomo T. Characterization of rat myocardial sarcolemma. J Mol Cell Cardiol 1981; 13: 1051-1061.
  • 22. Philipson KD, Nishimoto AY. Stimulation of Na-Ca²⁺ exchange in cardiac sarcolemmal vesicles by phospholipase D. J Biol Chem 1984; 259: 16-19.
  • 23. Post JA, Langer GA, Op den Kamp JAF, Verkleij AJ. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and “gas-dissected” membranes. Biochim Biophys Acta 1988; 943: 256-266.
  • 24. Langer GA, Nudd LM. Addition and characterization of mitochondrial calcium in myocardial tissue culture. Am J Physiol 1980; 239: H769-H774.
  • 25. Lehninger AL. Role of phosphate and other proton donating anions in respiration-coupled transport of Ca²⁺ by mitochondria. Proc Natl Aced Sci USA 1974; 71: 1520-1524.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54b33886-8f0a-4e5d-bab0-afccbf04befd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.