PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Parametric and nonparametric approaches for detecting the most important factors in biogas production

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this paper is to compare results obtained via the well-known regression method ordinary least squares (OLS) and the alternative regression method called multiple model regression estimation (MM-estimation). This is motivated by the fact that exceptional crop yield observations (outliers and leverage points) can cause misleading results if least squares regression is applied. The paper demonstrates that in this case, robust regression is a more appropriate approach, with higher adjusted R-squared value. With both methods, several models have been proposed for predicting the production of biogas where various explanatory variables have been considered, such as the parameters of Weende analysis, C/N ratio, pH value, and the value of volatile fatty acids. Anaerobic digestion was carried out with a basic substrate of pig slurry and with different combinations of co-substrates, where co-substrate maize (main crop), maize (stubble crop), triticale (main crop), sorghum (main crop), a mixture of plants for biomass production (main crop), and grain maize (grain at the wax ripeness stage) were used. To optimize the anaerobic process of fermentation of substrate with co-substrate, the experimental reactor of the Nemščak biogas plant was applied. The average yield of biogas ranged from 384 Nl/kg VS to 635 Nl/kg. The resulting models revealed that crude protein (XP), starch (XS), nitrogen-free extracts (NFE), C/N ratio, volatile fatty acids (VFA), and pH value were the most important predictors affecting biogas production from different substrates. These models are helpful tools in optimising and predicting biogas production from energy crops.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.291-301,fig.,ref.

Twórcy

autor
  • Panvita d.d., Rakican, Murska Sobota, Slovenia
  • Faculty of Agriculture and Life Sciences, Hoce, Slovenia
  • Faculty of Agriculture and Life Sciences, Hoce, Slovenia
autor
  • Faculty of Agriculture and Life Sciences, Hoce, Slovenia
autor
  • Faculty of Agriculture and Life Sciences, Hoce, Slovenia

Bibliografia

  • 1. AL SEADI T., RUTZ D., PRASSL H., KÖTTNER M., FINSTERWALDERF F., VOLK S., JANSSEN R., GRMEK M. Handbook on biogas. Agency of restructuring energy, Ljubljana, 1, 2010.
  • 2. COMPARETTI A., FEBO C., GRECO C., ORLANDO S. Current state and future of biogas and digestate production. Bulg. J. Agric. Sci. 19, 1, 2013.
  • 3. KHAN I.U., OTHMAN M.H.D., HASHIM H., MATSUURA T., ISMAIL A.F., REZAEI-DASHTARZHANDI M., WAN AZELEE I. Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energ. Convers. Manage. 150, 277, 2017.
  • 4. GONZÁLES-GARCIA S., BACENETTI J., NEGRI M., FIALA M., ARROJA L. Comparative environmetal performance of three different annual energy crops for biogas production in Northern Italy. J. Clean. Proud. 43, 1, 2013.
  • 5. SCHATTAUER A., ADBOUN E., WEILAND P., PLÖCHL M., HEIERMANN M. Abundance of trace elements in demonstration biogas plants. Biosyst. Eng. 108, 57, 2011.
  • 6. BROWN D., LEBO Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour. Technol. 127, 275, 2013.
  • 7. WANG X., LU X., LI F., YANG G. Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS ONE. 9 (5), 1, 2014.
  • 8. KAFLE G.H., KIM S.H. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products. Bioresour. Technol. 142, 553, 2013.
  • 9. GAO J., CHEN L., YAN Z., WANG L. Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour. Technol. 132, 361, 2012.
  • 10. BAUER A., LEONHARTSBERGER C., BÖSCH P., AMON B., FRIEDL A., AMON T. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean. Technol. Envir. 12, 153, 2010.
  • 11. VERVAEREN H., HOSTYN K., GHEKIERE G., WILLEMS B. Biological ensilage additives as pretreatment for maize to increase the biogas production. Renew. Energy. 35 (9), 2089, 2010.
  • 12. OSLAJ M., MURSEC B., VINDIS P. Biogas production from maize hybrids. Biomass Bioenergy. 34 (11), 1538, 2010.
  • 13. GISSÉN C., PRADE T., KREUGER E., NGES I.A., ROSENQVIST H., SVENSSON S.E., LANTZ M., MATTSSON J.E., BÖRJESSON P., BJÖRNSSON L. Comparing energy crops for biogas production - Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy. 64, 199, 2014.
  • 14. DIOHA I.J., IKEME C.H., NAFI’U T., SOBA N.I. YUSUF M.B.S. Effect pf carbon to nitrogen ratio on biogas production. IRJNS. 1 (3), 1, 2013.
  • 15. ZHANG B., SU H., BAEYENS J., TAN T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sust. Energ. Rev. 38, 383, 2014.
  • 16. OLESZEK M., KRÓL A., TYS J., MATYKA M., KULIK M. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 156, 303, 2014.
  • 17. AMON T., AMON B., KRYVORUCHKO V., ZOLLITSCH W., MAYER K., GRUBER L. Biogas production from maize and dairy cattle manure – Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 118, 173, 2007.
  • 18. MAHMOOD A., ULLAH H., IJAZ M., JAVAID M.M., SHAHZAD A.N., HONERMEIER B. Evaluation of sorghum hybrids for biomass and biogas production. Aust. J. Crop. Sci. 7 (10), 1456, 2013.
  • 19. SASHISH S., VIVEKANANDAN S. Optimization of Different Parameters Affecting Biogas Production from Rice Straw: An analytical Approach. J. Simulat. 78, 2011.
  • 20. RATH J., HEUWINKEL H., HERRMANN A. Specific Biogas Yield of Maize Can Be Predicted by the Interaction of Four Biochemical Constituents. Bioenergy. Res. 6 (3), 939, 2013.
  • 21. DANDIKAS V., HEUWINKEL H., LICHTI F., DREWES J.E., KOCH K. Correlation between biogas yield and chemical composition of energy crops. Bioresour. Technol. 174, 316, 2014.
  • 22. DANDIKAS V., HEUWINKEL H., LICHTI F., DREWES J.E., KOCH K. Correlation between Biogas Yield and Chemical Composition of Grassland Plant Species. Energy Fuels. 29 (11), 7221, 2015.
  • 23. TRIOLO J.M., WARD A.J., PEDERSEN L., SOMER S.G. Characteristics of Animal Slurry as a Key Biomass for Biogas Production in Denmark. Biomass Now - Sustainable Growth and Use. InTech - Open Access Publisher. 307, 2013.
  • 24. HERRMAN C., IDLER C., HEIERMANN M. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresour. Technol. 206, 23, 2016.
  • 25. SIST ISO 6496:2000. Animal feeding stuffs, Determination of moisture and other volatile matter content.
  • 26. SIST ISO 5983:2009. Animal feeding stuffs, Determination of nitrogen content and calculation of crude protein content, Part 2: Block digestion and steam distillation method.
  • 27. SIST EN ISO 6865:2001. Animal feeding stuffs, Determination of crude fibre content − Method with intermediate filtration (ISO 6865:2000).
  • 28. SIST ISO 5984:2003. Animal feeding stuffs, Determination of crude ash.
  • 29. EU Directive 98/64/EC of 3 September 1998. Establishing community methods of analysis for the determination of amino acids, crude oils and fats.
  • 30. KJELDAHL J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances), Zeitschrift für analytische Chemie. 22 (1), 366, 1998.
  • 31. ISO 14235:1998. Soil quality - Determination of organic carbon by sulfochromic oxidation.
  • 32. AAT Biogas Technology, 2017. Available online: http://www.aat-biogas.at/ (accessed on 07.10.2017).
  • 33. DIN 38 414. Deutsche Norm (Schlamm und Sedimente – Grupe S), 1985.
  • 34. YOHAI V.J. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat. 15 (2), 642, 1987.
  • 35. STURM J.E., DE HAAN J. How robust is the relationship between economic freedom and economic growth? Applied. Economics. 33 (7), 839, 2001.
  • 36. STEVENS J. P. Outliers and influential data points in regression analysis. Psychological Bulletin. 95 (2), 334, 1984.
  • 37. BOLLEN K.A., JASCKMAN R. Regression diagnostics: An expository treatment of outliers and influential cases. In J. Fox & J. S. Long (Eds.), Modern methods of data analysis. Newbury Park, CA: Sage. 257, 1990.
  • 38. VELLEMAN P. F., WELSCH R. E. Efficient computing of regression diagnostics. The American Statistician. 35, 234, 1981.
  • 39. BAUER A., MAYR H., HOPFNER-SIXT K., AMON T. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues. J. biotechnol. res. 142 (1), 56, 2009.
  • 40. NEGRI M., BACENETTI J., BRAMBILLA M., MANFREDINI A., CANTORE A., BOCCHI S. Biomethane production from different crop systems of cereals in Northern Italy. Biomass Bioenergy. 63, 321, 2014.
  • 41. SEPPÄLÄ M., PYYKKÖNEN V., LAINE A., RINTALA J. Methane production from maize in Finland - Screening for different maize varieties and plant parts. Biomass Bioenergy. 46, 282, 2012.
  • 42. SUN Q., LI H., YAN J., LIU L., YU Z., YU X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sust. Energ. Rev. 51, 521, 2015.
  • 43. LI Y., PARK S.Y, ZHU J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy. Rev. 15 (1), 821, 2011.
  • 44. LIN J., ZUO J., GAN L., LI P., LIU F., WANG K., CHEN L., GAN H. Effects of mixture ratio on anaerobic codigestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 23 (8), 1403, 2011.
  • 45. NGES I.A., BJÖRNSSON L. High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy. 47, 62, 2012.
  • 46. MAO C., FENG Y., WANG X., REN G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy. Rev. 45, 540, 2015.
  • 47. CALLAGHAN F.J., WASE D.A.J., THAYANITHY K., FORSTER C.F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass. Bioenergy. 22 (1), 71, 2002.
  • 48. DE WINTER J.C.F, GOSLIN S.D., POTTER J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods. 21 (3), 273, 2016.
  • 49. RYAN T.P. Modern Regression Methods, New York, NY: John Wiley & Sons, Inc., 1, 2009.
  • 50. WEISSBACH F. Die Bewertung von nachwachsenden Rohstoffen für die Biogasgewinnung. Teil I: Das Gasbildungspotenzial der fermentierbaren Nährstoffe. Pflanzenbauwissenschaften, 13 (2), 72, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54525d6a-ea84-4d9f-83e4-dff056900bb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.