PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 157 | 12 |

Tytuł artykułu

Dokładność określania wybranych parametrów rozkładów pierśnic drzew w drzewostanach sosnowych za pomocą naziemnego skanowania laserowego

Treść / Zawartość

Warianty tytułu

EN
Accuracy of the selected tree diameter distributions parameters assessed using terrestrial laser scanning in Scots pine stands

Języki publikacji

PL

Abstrakty

EN
When using such methods as terrestrial laser scanning (TLS), one of the major factors influencing the accuracy of stand characteristics determination is the visibility of trees on a sample plot, which is often obscured by the shadow effect caused by trees located closer to the plot center. Because of this, the percentage of the identified trees and basal area depends on the distance from the plot center: the accuracy of stocking determination decreases as the plot radius increases. The values of such stand characteristics as average breast height diameter, standard deviation of tree diameters and percentiles of the tree diameters' distributions assessed based on all trees and the visible trees only are not significantly different from each other for circular sample plots with 20 m radius. Skewness and kurtosis are not significantly different in plots with radius of 5 and 10 meters. For the 15 m plot radius the difference was significant for about 15% of the analyzed plots. The obtained results correspond with previous findings that report that on the circular sample plots with radius up to 15 m the errors for the number of trees and basal area are relatively small and can be accepted in the practical inventory. The results support the circular sample plots size optimization, including measure− ments performed using a point cloud.

Wydawca

-

Czasopismo

Rocznik

Tom

157

Numer

12

Opis fizyczny

s.883-891,rys.,bibliogr.

Twórcy

autor
  • Samodzielna Pracownia Dendrometrii i Nauki o Produkcyjności Lasu, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Zakład Informatyki i Modelowania, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Aschoff T., Spiecker H. 2004. Algorithms for the Automatic Detection of Trees in Laser−Scanner Data. International
  • Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (8/W2): 71−75.
  • Bailey R. L., Dell T. R. 1973. Qualifying diameter distributions with the Weibull function. Forest Science 19: 97−104.
  • Bienert A., Maas H G., Scheller S. 2006a. Analysis of the information content of terrestrial laser scanner point clouds for the automatic determination of forest inventory parameters. W: Koukal T., Schneider W. [red.]. 3−D
  • Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. 44−49.
  • Bienert A., Scheller S., Keane E., Mohan F., Nugent C. 2007. Tree detection and diameter estimations by analysis of forest terrestrial laser scanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (3/W52): 50−55.
  • Bienert A., Scheller S., Keane E., Mullooly G., Mohan F. 2006b. Application of terrestrial laser scanners for the determination of forest inventory parameters. W: Maas H. G., Schneider D. [red]. Proceedings of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, Dresden, 25−27 October 2006.
  • Bitterlich W. 1948. Die Winkelzählprobe. Allg. Forst−und Holzwirt. Zeitung 59: 4−5.
  • Bitterlich W. 1984. The relascope idea: relative measurements in forestry. Commonwealth Agricultural Bureau, Slough, UK.
  • Bliss C. I., Reinker K. A. 1964. A log−normal approach to diameter distribution in even−aged stands. Forest Science 10: 350−360.
  • Bruchwald A. 1988. Simulation algorithm of the distribution of b.h. diameters of trees in pine stands. Annals of Warsaw Agricultural University – SGGW−AR, Forestry and Wood Technology 37: 91−95.
  • Chirrek M., Strzeliński P., Wencel A., Zawiła−Niedźwiecki T., Zasada M., Jagodziński A. M. 2007. Wybrane zdalne metody szacowania biomasy roślinnej w ekosystemach leśnych jako podstawa systemu raportowania bilansu węgla. Roczniki Geomatyki 5 (4): 7−16.
  • Chmielewski L. J., Bator M. 2012. Hough transform for opaque circles measured from outside and fuzzy voting for and against. W: Computer Vision and Graphics: Proc. Int. Conf. ICCVG 2012, Warsaw, Poland, 24−26 Sep 2012. Springer Verlag. 313−320.
  • Chmielewski L., Bator M., Zasada M., Stereńczak K., Strzeliński P. 2010. Fuzzy Hough transform−based methods for extraction and measurements of single trees in large−volume 3D terrestrial LIDAR data. W: Bolc L., Tadeusiewicz R., Chmielewski L. J., Wojciechowski K. [red.]. Computer Vision and Graphics: Proc. Int. Conf. ICCVG 2010, Warsaw, Poland, 20−22 Sep 2010. Springer Verlag. 265−274.
  • Clutter J. L., Bennett F. A. 1965. Diameter distributions in old−field slash pine plantations. Georgia Forest Research Council Report 13.
  • Efron B. 1982. The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • García O. 1981. Simplified method−of−moments estimation for the Weibull distribution. New Zealand Journal of Forestry Science 11: 304−306.
  • Gorgoso J. J., Álvarez González J. G., Rojo A., Grandas−Arias J. A. 2007. Modelling diameter distributions of Betula alba L. stands in northwest Spain with the two−parameter Weibull function. Investigación Agraria: Sistemas y Recursos Forestales 16 (2): 113−123.
  • Gobakken T., Naset E. 2005. Weibull and percentile models for lidar−based estimation of basal area distribution. Scandinavian Journal of Forest Research 20: 490−502.
  • Hafley W. L., Shreuder H. T. 1977. Statistical distributions for fitting diameter and height data in even−aged stands. Canadian Journal of Forest Research 7: 481−487.
  • Henning G. H., Radtke P. J. 2006. Ground−based Laser Imaging for Assessing Three−dimensional Forest Canopy Structure. Photogrammetric Engineering & Remote Sensing 72 (12): 1349−1358.
  • Hopkinson C., Chasmer L., Young−Pow C., Treitz P. 2004. Assessing forest metrics with a ground−based scanning lidar. Canadian Journal of Forest Research 34: 573−583.
  • Ihaka R., Gentleman R. 1996. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5 (3): 299−314.
  • Iles K. 2012. Some Current Subsampling Techniques in Forestry. Mathematical and Computational Forestry & Natural−Resource Sciences 4 (2): 77−80.
  • Leak W. B. 1964. An Expression of Diameter Distribution For Unbalanced, Uneven−Aged Stands and Forests. Forest Science 10: 39−50.
  • Lei Y. 2008. Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis). Journal of Forest Science 54 (12): 566−571.
  • Lenhard J. D., Clutter J. L. 1971. Cubic−foot yield tables for old−field loblolly pine plantations in the Georgia Piedmont. Georgia Forest Research Council Report 22 (3).
  • Liu C., Zhang L., Davis C. J., Solomon D. S., Gove J. H. 2002. A finite mixture model for characterizing the diameter distribution of mixed−species forest stands. Forest Science 48: 653−661.
  • Maas H.−G., Bienert A., Scheller S., Keane E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing 29 (5): 1579−1593.
  • Maltamo M., Suvanto A., Packalen P. 2007. Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation. Forest Ecology and Management 247 (1−3): 26−34.
  • McGee C. E., Della−Bianca L. 1967. Diameter distributions in natural yellow−poplar stands. USDA Forest Service Research Paper SE−25..
  • Meyer H. A. 1952. Structure, growth, and drain in balanced uneven−aged forests. Journal of Forestry 50: 85−92.
  • Meyer H. A., Stevenson D. D. 1943. The structure and growth of virgin beech−birch−maple−hemlock forests in northern Pennsylvania. Journal of Agricultural Research 67: 465−484.
  • Nelson T. C. 1964. Diameter distribution and growth of loblolly pine. Forest Science 10: 105−115.
  • Podlaski R. 2008. Characterization of diameter distribution data in near−natural forests using the Birnbaum−Saunders distribution. Canadian Journal of Forest Research 38: 518−527.
  • Podlaski R. 2010. Two−component mixture models for diameter distributions in mixed−species, two−age cohort stands. Forest Science 56: 379−390.
  • Podlaski R. 2011. Modelowanie rozkładów pierśnic drzew z wykorzystaniem rozkładów mieszanych. I. Definicja, charakterystyka i estymacja parametrów rozkładów mieszanych. Sylwan 155 (4): 244−252.
  • Podlaski R., Roesch F. A. 2013. Aproksymacja rozkładów pierśnic w dwugeneracyjnych drzewostanach za pomocą rozkładów mieszanych. I. Estymacja parametrów. Sylwan 157 (8): 587−596.
  • Schnur G. L. 1934. Diameter distributions for old−field loblolly pine stands in Maryland. Journal of Agricultural Research 49: 731−743.
  • Shifley S. R., Lentz E. L. 1985. Quick estimation of the three−parameter Weibull to describe tree size distributions. Forest Ecology and Management 13: 195−203.
  • Siekierski K. 1991. Three methods of estimation of parameters in the double normal distribution and their applicability to modelling tree diameter distributions. Annals of Warsaw Agricultural University – SGGW, Forestry and Wood Technology 42: 13−17.
  • Siekierski K. 1992. Comparison and evaluation of three methods of estimation of the Johnson SB distribution. Biometrical Journal 34: 879−895.
  • Simonse M., Aschoff T., Spiecker H., Thies M. 2003. Automatic Determination of Forest Inventory Parameters Using Terrestrial Laserscanning. Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests, Umea. 251−257.
  • Tanaka T., Yamaguchi J., Takeda Y. 1998. Measurement of forest canopy structure with a laser plane range−finding method – development of a measurement system and applications to real forests. Agricultural and Forest Meteorology 91: 149−160.
  • Thies M., Aschoff T., Spiecker H. 2003. Terrestrische Laserscanner im Forst – für forstliche Inventur und wissenschaftliche Datenerfassung. AFZ/Der Wald 58 (22): 1126−1129.
  • Thies M., Spiecker H. 2004. Evaluation and Future Prospects of Terrestrial Laser−Scanning for Standardized Forest Inventories. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (8/W2): 192−197.
  • Thomas V., Oliver R. D., Lim K., Woods M. 2008. LiDAR and Weibull modeling of diameter and basal area. Forestry Chronicle 84 (6): 866−875.
  • Wang M., Rennols K. 2005. Tree diameter modelling: introducing the logit−logistic distribution. Canadian Journal of Forest Research 35: 1305−1313.
  • Wencel A., Wężyk P., Zasada M. 2008. Możliwości zastosowania naziemnego skaningu laserowego w leśnictwie. W: Zawiła−Niedźwiecki T., Zasada M. [red.]. 2008. Techniki geomatyczne w inwentaryzacji lasu – potrzeby i możliwości. Wydawnictwo SGGW, Warszawa. 77−89.
  • Zasada M., Cieszewski C J. 2005. A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even−aged Scots pine stands in Poland. Forest Ecology and Management 204: 145−158.
  • Zasada M., Stereńczak K., Dudek W. M., Rybski A. 2013. Horizon visibility and accuracy of stocking determination on circular sample plots using automated remote measurement techniques. Forest Ecology and Management 302: 171−177.
  • Zawiła−Niedźwiecki T., Stereńczak K., Bałazy R., Wencel A., Strzeliński P., Zasada M. 2008. Lidar w leśnictwie. Teledetekcja Środowiska 39: 57−64.
  • Zawiła−Niedźwiecki T., Zasada M. [red.]. 2008. Techniki geomatyczne w inwentaryzacji lasu – potrzeby i możliwości. Wydawnictwo SGGW, Warszawa.
  • Zhang L .J., Gove J. H., Liu C., Leak W. B. 2001. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated−sigmoid, uneven−aged stands. Canadian Journal of Forest Research 31: 1654−1659.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-53e0c704-0d56-46d9-b160-42e25863ffee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.