PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |

Tytuł artykułu

The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat (Triticum aestivum L.) leaves were investigated in field drought conditions. Silicon application improved the leaf relative water content and water potential under drought. The leaf net photosynthetic rate and stomatal conductance were significantly decreased between 7:30 and 17:30 under drought, whereas silicon application increased the leaf net photosynthetic rate between 7:30 and 15:30 with an exception at 9:30. Silicon application also increased the leaf stomatal conductance at 13:30 and 17:30 under drought. The leaf transpiration rate was decreased by drought but it was increased by silicon from 13:30 to 17:30. The intercellular CO₂ concentration was increased at 7:30 under drought, while it was decreased most of the time from midday to the afternoon. The leaf stomatal limitation was increased under drought from 11:30 to 17:30, whereas it was intermediate in silicon treated plants. The instantaneous water use efficiency was significantly increased by silicon application at 7:30 under drought. Silicon application slightly decreased the activity of ribulose-1, 5-bisphosphate carboxylase, but it increased the activity of phosphoenolpyruvate carboxylase and the concentration of inorganic phosphorus under drought. These results suggest that silicon could improve the photosynthetic ability of wheat in field drought conditions, and both stomatal and non-stomatal factors were involved in the regulation. In the early morning (at 7:30), the non-stomatal factor was the main contributor; 9:30 was a turning point, after which the stomatal factor was the main contributor.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

4

Opis fizyczny

p.1589-1594,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100 Xianyang, Saanxi, China
autor
  • College of Life Sciences, Northwest A and F University, Yangling, 712100 Xianyang, Saanxi, China

Bibliografia

  • Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot 58: 343–351
  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein-dye binding. Anal Biochem 72:248–254
  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142: 67–76
  • Crusciol CAC, Pulz AL, Lemos LB, Soratto RP, Lima GPP (2009) Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci 49:949–954
  • Ding YF, Liang YC, Zhu J, Li ZJ (2007) Effects of silicon on plant growth, photosynthetic parameters and soluble sugar content in leaves of wheat under drought stress. Plant Nutr Fert Sci 13: 471–478
  • dos Santos MG, Ribeiro RV, de Oliveira RF, Machado EC, Pimentel C (2006) The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Sci 170:659–664
  • Doubnerová V, Ryšlavá H (2011) What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci 180: 575–583
  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17
  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647
  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321
  • Hattori T, Lux A, Tanimoto E, Luxova M, Sugimoto Y, Inanaga S (2001) The effect of silicon on the growth of sorghum under drought. In: Morita S (ed) The 6th Symposium of the International Society of Root Research. Japanese Society for Root Research (JSRR), Nagoya, pp 348–349
  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolour. Physiol Plant 123:459–466
  • Hattori T, Sonobe K, Inanaga S, An P, Tsuji W, Araki H, Eneji AE, Morita S (2007) Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ Exp Bot 60:177–182
  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of siliconmediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428
  • Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64:286–294
  • Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Filho BGS, Neto CFO, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS, Marochio CA (2009) Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Biol Sci 4:617–623
  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115
  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252
  • Signarbieux C, Feller U (2011) Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environ Exp Bot 71:192–197
  • Sistani KR, Savant NK, Reddy KC (1997) Effect of rice hull ash silicon on rice seedling growth. J Plant Nutr 20:195–201
  • Sonobe K, Hattori T, An P, Tsuji W, Eneji E, Tanaka K, Inanaga S (2009) Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon under water stress. J Plant Nutr 32:433–442
  • Wang Z-M, Wei A-L, Zheng D-M (2001) Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica 39:239–244
  • Wei A, Wang Z, Zhai Z, Gong Y (2003) Effect of soil drought on C₄ photosynthesis enzyme activities of flag leaf and ear in wheat. Sci Agric Sin 36:508–512
  • Xu S, Shen X, Gu W, Dai J, Wang L (1994) Changes of lipid peroxidation, reasterification of phosphatide and ultrastructure of membrane in leaf cells of maize under soil drought condition. Acta Agron Sin 20:564–569
  • Yoshida S (1965) Chemical aspects of the role of silicon in physiology of the rice plant. Bull Natl Inst Agric Sci B 15:18–58
  • Yu DJ, Kim SJ, Lee HJ (2009) Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars. Biol Plant 53:133–137
  • Zhu X, Gong H, Chen G, Wang S, Zhang C (2005) Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ 62:1–14

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5356ea0c-167d-4bc7-a14b-d5ca4cd60633
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.