Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2017 | 78 |

Tytuł artykułu

Distribution, occurrence, and cluster analysis of new polyprenyl acetones and other polyisoprenoids from North Sumatran mangroves


Treść / Zawartość

Warianty tytułu

Języki publikacji



Background. Mangrove forests have long been known as a source of phytochemical compounds producing various secondary metabolites. Despite the ubiquitous diversity of polyisoprenoids in the plant kingdom, few studies have focused on the distribution of polyisoprenoids in mangrove plants. The present study describes the distribution and occurrence of a new class of prenyl derivates – polyprenyl acetone as well as other polyisoprenoids in fourteen species of Indonesian mangroves, with an emphasis on chemotaxonomic importance. Material and methods. The leaves and roots of fourteen North Sumatran mangroves were analyzed using two-dimensional thin layer chromatography and electrospray ionization mass spectrometry. Results. In the leaves, the distribution of several types of polyprenyl acetones, polyprenols, and dolichols was detected and classified into types: type-I, having a predominance of dolichols over polyprenols (more than nine-fold), was observed in Acrostichum aureum (younger leaves), Avicennia alba, Av. lanata, Av. officinalis, Bruguiera parviflora, Ceriops tagal, Nypa fruticans, and Rhizophora mucronata; type-II, having the presence of both polyprenols and dolichols, was observed in Acanthus ilicifolius, Acr. aureum, B. cylindrica, and R. apiculata; type-III having a predominance of polyprenols over dolichols (more than nine-fold), was not observed in any North Sumatran mangroves; type-IV, having the presence of both polyprenyl acetones and dolichols, was observed in Aegiceras corniculatum; type-V, having the presence of polyprenyl acetones, polyprenols, and dolichols, was observed in Sonneratia caseolaris and Xylocarpus granatum. In the roots, type-I distribution was observed in Ae. corniculatum, Av. alba, Av. lanata, Av. officinalis, B. parviflora, C. tagal, N. fruticans, R. apiculata, R. mucronata, S. caseolaris, and X. granatum. Type-II distribution was observed in Ac. ilicifolius, Acr. aureum, and B. cylindrica. Type-III, -IV, and -V distributions were not observed in mangrove roots. Cluster analysis demonstrated that polyisoprenoid patterns in the leaves and roots form distinct separation into appropriate genera and tribe, suggesting that mangrove polyisoprenoids are chemotaxonomically significant. Conclusions. The major polyisoprenoid alcohols in Indonesian mangroves were found to be dolichols rather than polyprenols. The diversity of polyisoprenoids in both leaves and roots of mangroves may provide chemotaxonomic marker. The discovery of a new class of polyprenyl acetone is the first report from mangrove plants.

Słowa kluczowe







Opis fizyczny




  • Baczewska AH, Dmuchowski W, Jozwiak A, Gozdowski D, Brągoszewska P, Dąbrowski P, & Swiezewska E (2014) Effect of salt stress on prenol lipids in the leaves of Tilia ‘Euchlora’. Dendrobiology 72: 177–186.
  • Bajda A, Konopka-Postupolska D, Krzymowska M, Hennig J, Skorupinska-Tudek K, Surmacz L, Wojcik J, Matysiak Z, Chojnacki T, Skorzynska-Polit E, Drazkiewicz M, Patrzylas P, Tomaszewska M, Kania M, Swist M, Danikiewiczc W, Piotrowska W & Swiezewska E (2009) Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiologia Plantarum 135: 351–364.
  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management 10: 421–452.
  • Basyuni M, Oku H, Baba S, Takara K & Iwasaki H (2007a) Isoprenoids of Okinawan mangroves as lipid input into estuarine ecosystem. Journal of Oceanography 63: 601–608.
  • Basyuni M, Oku H, Tsujimoto E, Kinjo K, Baba S & Takara K (2007b) Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae. FEBS Journal 274: 5028–5042.
  • Basyuni M, Putri LAP, Nurainun H, Julayha, Nurainun H & Oku H (2012a) Non-saponifiable lipid composition of four salt-secretor and non-secretor mangrove species from North Sumatra, Indonesia. Makara Journal of Science 16: 89–94.
  • Basyuni M, Baba S, Kinjo Y, Putri LAP, Hakim L & Oku H (2012b) Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza. Journal of Plant Physiology 169: 1903–1908.
  • Basyuni M, Putri LAP & Oku H (2013) Phytomedicinal investigation from six mangrove tree species, North Sumatra, Indonesia. Ilmu Kelautan: Indonesian Journal of Marine Science 18: 157–164.
  • Basyuni M, Sagami H, Baba S, Iwasaki H & Oku H (2016) Diversity of polyisoprenoids in ten Okinawan mangroves. Dendrobiology 75: 167–175.
  • Chojnacki T & Dallner G (1988) The biological role of dolichol. Biochemical Journal 251: 1–9.
  • Chouda M & Jankowski W (2005) The occurrence of polyprenols in seeds and leaves of woody plants. Acta Biochimica Polonica 52: 243–253.
  • Daniels I & Hemming FW (1990) Changes in murine tissue concentrations of dolichol and dolichol derivatives associated with age. Lipids 25: 586–593.
  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J & Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20: 154–159.
  • Grabinska K & Palamarczyk G (2002) Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Research 2: 259–265.
  • Hogg RW & Gillan FT (1984) Fatty acids, sterols and hydrocarbons in the leaves from eleven species of mangrove. Phytochemistry 23: 93–97.
  • Irvine WJ, Woollen BH & Jones DH (1972) Bombiprenone from Nicotiana tabacum. Phytochemistry 11: 467–469.
  • Ishiguro T, Morita-Fujimira Y, Shidoji Y & Sagami H (2014) Dolichol biosynthesis: The occurrence of epoxy dolichol in skipjack tuna liver. Biochemical and Biophysical Research Communication 453: 277–281.
  • Lakshmi M, Parani M & Parida A (2002) Molecular phylogeny of mangroves IX: Molecular marker assisted intra-specific variation and species relationships in the Indian mangrove tribe Rhizophoraceae. Aquatic Botany 74: 201–217.
  • Parani M, Lakshmi M, Senthilkumar P, Ram N & Parida A (1998) Molecular phylogeny of mangroves V. Analysis of genome relationships in mangrove species using RAPD and RFLP markers. Theoretical and Applied Genetics 97: 617–625.
  • Patra JK & Thatoi HN (2011) Metabolic diversity and bioactivity screening of mangrove plants: a review. Acta Physiologiae Plantarum 33: 1051–1061.
  • Pattison RJ & Amtmann A (2009) N-glycan production in the endoplasmic reticulum of plants. Trends in Plant Science 14: 92–99.
  • Rezanka T & Votruba J (2001) Chromatography of long chain alcohols (polyprenols) from animal and plant sources. Journal of Chromatography A 936: 95–110.
  • Roslinska M, Walinska K, Swiezewska E & Chojnacki T (2002) Plant long-chain polyprenols as chemotaxonomic markers. Dendrobiology 47: 41–50.
  • Sagami H, Kurisaki A, Ogura K & Chojnacki T (1992) Separation of dolichol from dehydrodolichol by a simple two-plate thin layer chromatography. Journal of Lipid Research 33: 1857–1861.
  • Schneider CA, Rasband WS & Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.
  • Setoguchi H, Kosuge K & Tobe H (1999) Molecular phylogeny of Rhizophoraceae based on rbcl gene sequences. Journal of Plant Research 112: 443–455.
  • Skoczylas E, Swiezewska E, Chojnacki T & Tanaka Y (1994) Long-chain rubber-like polyisoprenoid alcohols in leaves of Lumnitzera racemosa. Plant Physiology and Biochemistry 32: 825–829.
  • Skorupinska-Tudek K, Wojcik J & Swiezewska E (2008) Polyisoprenoid alcohols–recent results of structural studies. The Chemical Record 8: 33–45.
  • Sun F, Cai Z, Chaudhary MI, Xiao P & Cheng Y (2010) Distribution of the triterpenoid saponins and chemotaxonomy of the genus Clematis L. by high-performance liquid chromatography-mass spectrometry. Biochemical Systematic and Ecology 38: 1018–1025.
  • Schwarzbach AE & Ricklefs RE (2000) Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. American Journal of Botany 87: 547–564.
  • Swiezewska E, Sasak W, Mankowski T, Jankowski W, Vogtman T, Krajewska I, Hertel J, Skoczylas E & Chojnacki T (1994) The search for plant polyprenols. Acta Biochimica Polonica 41: 221–260.
  • Swiezewska E & Danikiewicz W (2005) Polyisoprenoids: Structure, biosynthesis and function. Progress in Lipid Research 44: 235–258.
  • Tateyama S, Wititsuwannakul R, Wititsuwannakul D, Sagami H & Ogura K (1999) Dolichols of rubber plant, ginkgo and pine. Phytochemistry 51: 11–15.
  • Tomlinson PB (1986) The Botany of Mangroves. 1st ed. Cambridge University Press, London.
  • Wojtas M, Bieñkowski T, Tateyama S, Sagami H, Chojnacki T, Danikiewicz W & Swiezewska E (2004) Polyisoprenoid alcohols from the mushroom Lentinus edodes. Chemistry and Physics of Lipids 130: 109–115.
  • Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T & Brennan PJ (1994) Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. Journal of Biological Chemistry 269: 23328–23335.
  • Zhang H, Ohyama K, Boudet J, Chen Z, Yang J, Zhang M, Muranaka T, Maurel C, Zhu JK & Gong Z (2008) Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 20: 1879–1898.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.