PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 22 |

Tytuł artykułu

Decomposition of organic macromolecular compounds by heterotrophic bacteria inhabiting surface microlayer, subsurface water and sediment-water interface in the marine harbor channel

Treść / Zawartość

Warianty tytułu

PL
Depolimeryzacja organicznych makromolekuł przez bakterie heterotroficzne zasiedlające błonę powierzchniową, wodę podpowierzchniową i przydenną w morskim kanale portowym

Języki publikacji

EN

Abstrakty

EN
Potential capability of heterotrophic bacteria to hydrolytic degradation different organic macromolecules in three water layers in the marine channel were determined. In studied channel hydrolysed proteins and lipids. The heterotrophic microflora decomposition chitin were represented by the least abundant group of these organisms. The highest number of bacteria hydrolyzing tested organic macromolecules isolated from surface microlayer. It was demonstrated that no significant differences in number of bacteria decomposition studied organic compounds existed between different parts of harbour. Bacteria isolated from the water studied channel in different seasons hydrolyzing organic macromolecules with different intensity.
PL
Badania bakteriologiczne przeprowadzono w estuariowym odcinku rzeki Słupi będącym morskim kanałem portowym Ustce. Wodę z czterech stanowisk badawczych pobierano z błony powierzchniowej oraz z warstwy wody podpowierzchniowej i przydennej. W badanych próbach przy użyciu metod hodowlanych oznaczono liczebność bakterii heterotroficznych zdolnych do depolimeryzacji sześciu wielkocząsteczkowych związków organicznych. Uzyskane wyniki badań wykazały, że wśród bakterii neustonowych i planktonowych najliczniejsze były organizmy proteolityczne i lipolityczne, a najmniej licznie występowały organizmy chitynolityczne. Wykazano liczbowe zróżnicowanie występowania badanych grup fizjologicznych bakterii w profilu wertykalnym, a homogenne ich występowanie w profilu horyzontalnym. Badane organizmy charakteryzowały się dużą dynamiką zmian sezonowych.

Wydawca

-

Rocznik

Tom

22

Opis fizyczny

p.29-46,fig.,ref.

Twórcy

autor
  • Department of Experimental Biology, Institute of Biology and Enviromental Protection, Pomeranian University in Slupsk, ul. Arciszewskiego 22b, 76-200 Slupsk, Poland
autor
  • Department of Experimental Biology, Institute of Biology and Enviromental Protection, Pomeranian University in Slupsk, ul. Arciszewskiego 22b, 76-200 Slupsk, Poland
autor
  • Department of Experimental Biology, Institute of Biology and Enviromental Protection, Pomeranian University in Slupsk, ul. Arciszewskiego 22b, 76-200 Slupsk, Poland

Bibliografia

  • Ainsworth A.M., Goulder R., 2000. Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England. Sci. Total. Environ., 251-252, 191-204.
  • Albers C.S., Kattner G., Hagen W., 1996. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepodes: evidence of energetic adaptation. Mar. Chem., 55, 347-358.
  • Aller J.Y., Kuznetsova M.R., Jahns C.J., Kemp P.F., 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol. Sci., 36, 801-812.
  • Antonowicz J., Mudryk Z.J., Zdanowicz M., 2015. A relationship between accumulation of heavy metals and microbiological parameters in the surface microlayer and subsurface water of a coastal Baltic lake. Hydrobiol., 762, 65-80.
  • Billen G., Fontigny A., 1987. Dynamics of a phaeocystis – dominated spring bloom in Belgian coastal waters, II Bacterioplankton dynamics. Mar. Ecol. Prog. Ser., 37, 249-57.
  • Caruso G., 2015. Microbial parameters as a practical tool for the functional characterization and ecological status assessment of transitional areas. J. Ecosys. Ecograph., 5, 1-3.
  • Celussi M., Del Negro P., 2012. Microbial degradation at shallow costal site: Long-term spectra and rates of exoenzymatic activities in the NE Adriatic Sea. Estuar. Cost. Shelf Sci., 115, 75-86.
  • Chen Y.Ch., Yang G.-P., Xia Q.-Y., Wu G.-W., 2016. Enrichment and characterization of dissolved organic matter in the surface microlayer and subsurface water of the South Yellow Sea. Mar. Chem., 182, 1-13.
  • Christowa C., Luks K., Christowa-Dobrowolska M., Szulc M., Kiełb-Stańczuk M., Podruczna B., Kasperek S., Hącia E., 2007. The development strategy of the sea port in Ustka by 2021. Business Mobility International Private Limited Company, Słupsk.
  • Chróst R.J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Microbial enzymes in aquatic environments. (Ed.) R.J. Chróst. Springer Verlag, New York, 29-59.
  • Coelho F.J.R.C., Sousa S., Santos L., Santos A.L., Almeida A., Gomes N.C.M., et al., 2010. PAH degrading bacteria in an estuarine system. Interdisciplinary Studies on Environmental Chemistry – Biological Responses to Contaminants. (Eds) N. Hamamura, S. Suzuki, S. Mendo, C.M. Barroso, H. Iwata and S. Tanabe, TERRAPUB, Tokyo, 77-87.
  • Cottrell M.T., Kirchman D.L., 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol., 66, 5116-5122.
  • Cunliffe M., Whiteley A.S., Newbold L., Oliver A., Schäfer H., Murrell J.C., 2009. Comparison of bacterioneuston and bacterioplancton dynamics during a phytoplankton bloom in a Fjord mesocosm. Appl. Environ. Microb., 75, 7173-7181.
  • Ferrer E.B., Stapert E.M., Sokalski W.T., 1963. A medium for improved recovery of bacteria from water. Can. J. Microbiol., 9, 420-422.
  • Gajewski A.J., Chróst R.J., 1995. Microbial enzyme activities and phytoplankton and bacterial production in the pelagial of the Great Mazurian Lakes (North-Eastern Poland) during summer stratification. Ekol. Pol., 43, 245-265.
  • Gajewski A.J., Kirschner A.K.T., Velimirov B., 1997. Bacterial lipolytic activity in a hypertrophic dead arm of the river Danube in Vienna. Hydrobiol., 344, 1-10.
  • Garrett W.D., 1965. Collection of slick-forming materials from the sea surface. Limnol. Oceanogr., 10, 602-605.
  • Helmke E., Weyland H., 1986. Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic Ocean bacteria. Mar. Biol., 91, 1-7.
  • Halliwell G., 1962. Cellulose. In: Methoden der enzymatischen Analyse. (Ed.) H.V. Bergmeyer, Verlag Chemie GmbH, Weinheim, 64-71.
  • Incera M., Cividanes S.P., Lopez J., Costas R., 2003. Role of hydrodynamic conditions on quantity and biochemical composition of sediment organic matter in sandy intertidal sediments (NW Atlantic coast, Iberian Peninsula). Hydrobiol., 497, 39-51.
  • Jaffe R., Wolf G.A., Cabrera A.C., Chity H.C., 1995. The biogeochemistry of lipids in rivers of the Orinoco Basin. Geoch. Cosm. Acta., 59, 4507-4522.
  • Joux F., Agogué H., Obernosterer I., Dupuy C., Reinthaler T., Herndl G.J., Lebaron P., 2006. Microbial community structure in the sea surface microlayer at two contrasting coastal sites in the northwestern Mediterranean Sea. Aquat. Microb. Ecol., 42, 91-104.
  • Kiersztyn B., Siuda W., Chróst R.J., 2002. Microbial ectoenzyme activity: useful parameters for characterizing the trophic conditions of lakes. Pol. J. Environ. Stud., 1, 367-373.
  • Kirstein K.O., 1991. Annual variation of bacterial number, production and activity in Central Kiel Bight. Kieler Meer. Sonderh., 8, 8-13.
  • Krstulović N., Solić M., 1988. Distribution of proteolytic, amylolytic and lipolytic bacteria in the Kastela Bay. Acta Adria., 29, 75-82.
  • Kubera Ł., Donderski W., 2017. Distribution and physiological activity of heterotrophic benthic bacteria in lakes with different trophic conditions located in the Bory Tucholskie National Park (Poland). Pol. J. Natural. Sci., 32, 549-559.
  • Kuznetsova M., Lee C., Aller J., 2005. Characterization of the proteinaceous matter in marine aerosols. Mar. Chem., 96, 359-377.
  • Lingappa Y., Lockwood J.L., 1962. Chitin media for selective isolation and culture of actinomycetes. Phytopathol., 52, 317-323.
  • MacCarthy M.D., Benner R., Hedges J.I., 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281, 231-234.
  • Mallet C., Debroas D., 1999. Relations between organic matter and bacterial proteolytic activity in sediment surface layers of a eutrophic lake (Lake Aydat, Puy de Dôme, France). Archiv für Hydrobiologie, 145, 39-56.
  • Martinez J., Smith D.C., Steward D.F., Azam F., 1996. Variability in ectohydrolytic enzyme actives of pelagic marine bacteria and its significance for substrate processing in the sea, Aquat. Microb. Ecol., 10, 223-230.
  • Marty Y., Quemeneur M., Aminot A., Corre P., 1996. Laboratory study on degradation of fatty acids and sterols from urban wastes in seawater. Water Res., 30, 1127-1136.
  • Mudryk Z., Donderski W., 1997. The occurrence of heterotrophic bacteria decomposing some macromolecular compounds in shallow estuarine lakes. Hydrobiol., 342/343, 71-78.
  • Mudryk Z., 2003. Characteristic of heterotrophic bacteria inhabiting the Gulf of Gdansk. Balt. Cost. Zone, 6, 65-77.
  • Mudryk Z.J., Skórczewski P., 2004. Extracellular enzyme activity at the air-water interface of an estuarine lake. Estuar. Coast. Shelf. S., 59, 59-67.
  • Mudryk Z.J., Podgórska B., 2006. Enzymatic activity bacterial strains isolated from marine beach. Pol. J. Ecol., 15, 441-448.
  • Mudryk Z., Skórczewski P., 2007. Abundance and productivity of estuarine bacterioneuston and bacterioplankton. Balt. Coast. Zone, 11, 25-40.
  • Mudryk Z., Skórczewski P., Perliński P., Wielgat M., 2011. Studies on heterotrophic bacteria decomposing some macromolecular compounds in two marine beaches. Oceanol. Hydrobiol. St., 40, 74-83.
  • Mudroch A., MacKnight S.D., 1994. Handbook of Techniques for Aquatic Sediments Sampling. Second Edition CRC Press Inc., Boca Raton.
  • Münster U., Chróst R.J., 1990. Organic composition and microbial utilization of dissolved organic matter. In: Aquatic microbial ecology. Biochemistry and molecular approaches. (Eds) J. Overbeck, R.J. Chróst, Springer-Verlag, New York, 8-46.
  • Nikrad M.P., Cottrell M.T., Kirchman D.L., 2014. Uptake of dissolved organic carbon by gammaproteobacterial subgroups in coastal waters of the West Antarctic Peninsula. Appl. Environ. Microb., 80, 3362-3368.
  • Patel A.B., Fukami K., Nishijama T., 2000. Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan. Aquat. Microb. Ecol., 21, 139-149.
  • Parrish Ch.C., 1988. Dissolved and particulate marine lipid classes: A review. Mar. Chem., 23, 17-31.
  • Perliński P., 2015. Studium mikrobiologiczne stref granicznych powietrze–woda oraz woda–osad w kanale portowym w Ustce. (Microbiological study of air–water and water–sediment interface in harbour channel in Ustka). Ph.D. thesis. Pomeranian University in Słupsk, (in Polish).
  • Perliński P., Mudryk Z.J., 2017. Abundance of live and dead cells of bacterioneuston and bacterioplankton from the Słupia River estuary. Balt. Coast. Zone, 21, 61-72.
  • Perliński P., Mudryk Z.J., Antonowicz J., 2017. Enzymatic activity in the surface microlayer and subsurface water in the harbour channel. Estuar. Coast. Shelf. S., 150-158.
  • Quemeneur M., Morty Y., 1992. Sewage influence in a macrotidal estuary: fatty acid and sterol distribution. Estuar. Coast. Shelf Sci., 34, 347-363.
  • Reemtsma T., Haake B., Ittekkot V., Nair R.R., Brockmann U.H., 1990. Downward flux of particulate fatty acids in the Central Arabian Sea. Mar. Chem., 29, 277-99.
  • Romani A.M., Sabater A., 2000. Influence of algal biomass on extracellular enzyme activity in river biofilm. Microbial. Ecol., 41, 16-24.
  • Santos L., Santos A.L., Coelho F.J.R.C., Gomes N.C.M., Dias J.M., Cunha A., Almeida A., 2013. Heterotrophic activities of neustonic and planktonic bacterial communities in an estuarine environment (Ria de Aveiro). J. Plankton Res., 36, 230-242.
  • Seiler H., Braatz R., Ohmayer G., 1980. Numerical cluster analysis of the Coryne-form bacteria activated sludge. Zbl. Bakt. Hyg., 1, 357-375.
  • Skórczewski P., 2003. Udział bakterioneustonu i bakterioplanktonu w procesach transformacji materii organicznej w estuariowym jeziorze Gardno. (The contribution of bacterioneuston and bacterioplankton in organic matter transformation processes in the estuary Gardno lake). Ph.D. thesis. Pomeranian Pedagogical Academy in Słupsk, (in Polish).
  • Skórczewski P., Mudryk Z., 2005. Physiological properties of bacteria inhabiting coastal lake surface and subsurface water layer. Balt. Coast. Zone, 9, 43-52.
  • StatSoft Inc., 2012. STATISTICA (data analysis software system), ver. 12.
  • Sugita H., Oshima K., Fushion T., Deguchio Y., 1987. Substrate specificity of heterotrophic bacteria in the water and sediment of carp culture pond. Aquaculture, 64, 39-46.
  • Takenaka T., Tashiro T., Ozaki A., Takakubo H., Yamamoto Y., Maruyama T., 2007. Planktonic bacterial population dynamics with environmental changes in coastal areas of Suruga Bay. Microbes. Environ., 22, 257-267.
  • Thompson A.J., Sinsabaugh R.L., 2000. Matrix and particulate phosphatase and aminopeptidase activity in limnetic biofilms. Aquat. Microb. Ecol., 21, 151-59.
  • Velji M.J., Albright J., 1986. Microscopic enumeration of attached marine bacteria of seawater, marine sediment, faecal matter and kelp blade samples following pyrophosphate and ultrasound treatments. Can. J. Microbiol., 32, 121-126.
  • Walczak M., 2002. Bakterie neustonowe jeziora Jeziorak Mały, występowanie, właściwości fizjologiczne i aktywność metaboliczna. (Neustonic bacteria of Lake Jeziorak Mały, occurrence, physiological properties and metabolic activity). Ph.D. thesis. University of Nicolaus Copernicus, Toruń, (in Polish).
  • Walczak M., Donderski W., 2005. Bakterioneuston zbiorników wodnych. Post. Mikrobiol., 44, 275-288.
  • Walczak M., Swiontek-Brzezinska M., 2010. Phylogenetic diversity and abundance of bacteria from surface microlayer and subsurface water in eutrophic Lake. Pol. J. Ecol., 58, 177-186.
  • Wehr J.D., Petersen J., Findlay S., 1999. Influence of three contrasting detrital carbon sources on planktonic bacterial metabolism in a mesotrophic lake. Microbial. Ecol., 37, 23-35.
  • Weyland H., Rüger H.J., Schwarz H., 1970. Zur Isolierung und Identifizierung mariner Bakterien. Ein Beitrag mr Standardisierung und Entwicklung adaquater Methoden. (Izolacja i identyfikacja bakterii morskich. Wkład w standaryzację i rozwój odpowiednich metod). Veroff. Inst. Meeresforsch. Bremerhaven, 12, 269-296, (in German).
  • Worm J., Jensen L.E., Hansen T.S., Sondergaard M., Nybroe O., 2000. Interactions between proteolytic and non-proteolytic Pseudomonas fluorescens affect protein degradation in a model community. FEMS Microbial Ecol., 32, 103-109.
  • Zdanowicz M., 2009. Bakterioneuston i bakterioplankton przymorskiego jeziora Dołgie Wielkie – występowanie, produkcja i aktywność metaboliczna. (Bacterioneuston and bacterioplankton of the coastal lake Dołgie Wielkie – occurrence, production and metabolic activity). Ph.D. thesis. Pomeranian Pedagogical Academy in Słupsk, (in Polish).
  • Zdanowicz M., Mudryk Z., 2017. Abundance, production and respiration of bacterioneuston and bacterioplankton in the coastal lake Dołgie Wielkie. Balt. Coast. Zone, 21, 73-86.
  • Zawadzka E., 1996. Litho-morphodynamics in the vicinity of small ports of the Polish Central Coast. In: Partnership of the Coastal Management. (Eds) J. Taussik, J. Mitchel, Samara Publ. Limited, Cardigan GB, 353-360.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-529fc9da-eea4-40cd-bafd-1ae5737b396a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.