PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 53 | 2 |
Tytuł artykułu

Net radiation of mountain cultivated Norway spruce [Picea abies (L.) Karst.] stand: evaluation of short- and long-wave radiation ratio

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The radiation exchange drives the plant ecosystems energy balance and provides the energy for photosynthesis, transpiration and plant growth. The investigation on net radiation and its component during vegetation season in relation to the clearness index and sun elevation in a cultivated 31-year-old mountain spruce [Picea abies (L.) Karst.] stand is presented. Downward short-wave radiation – Sd (incident on the spruce stand was the main part of the short-wave radiation balance during the whole growing season (April–October) 2008. The Sd a mount i s seasonally variable factor determined by the duration of solar shine and the atmosphere transmissivity. Obtained value of net radiation (Rn) and downward short-wave radiation (Sd) ratio amounts to 0.61 on average during the growing season 2008 documenting the importance of the downward short-wave radiation in the net radiation of investigated spruce stand.
Wydawca
-
Rocznik
Tom
53
Numer
2
Opis fizyczny
p.114-122,fig.,ref.
Twórcy
autor
  • Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
autor
  • Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
  • Laboratory of Plant Ecological Physiology, Academy of Sciences, Global Change Research Centre - CzechGlobe, Belidla 986/4a, 603 00 Brno, Czech Republic
Bibliografia
  • Alados I., Foyo-Moreno I., Olmo F.J., Alados-Arboleda L. 2003. Relationship between net radiation and solar radiation for semi-arid shrub-land. Agricultural and Forest Meteorology, 116(3– 4), 221– 227.
  • Anthoni P.M., Law B.E., Unsworth M.H., Vong R.J. 2000. Variation of net radiation over heterogeneous surfaces: measurements and simulation in a juniper- sagebrush ecosystem. Agricultural and Forest Meteorology, 102, 275– 286.
  • Aubinet M., Grelle A., Ibrom A., Rannik Ü., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer Ch., Clement R., Elbers J., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., Vesala T. 2000. Estimates of the Antal net carbon and water exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113– 175.
  • Baldocchi D.D., Falge E., Lianhong G., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer Ch., Davis K., Evans R., Fuentes J., Goldstein A., Katul G., Law B., Lee X., Malhi Y., Meyers T., Munger W., Cechel W., Paw U.K.T., Pilegaard K., Schmid H.P., Valentini R., Verma S., Vesala T., Wilson K., Wofsy S. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem – scale carbon dioxide, water vapor and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415– 2434.
  • Baldocchi D.D., Law B.E., Anthoni P.M. 2000. On measuring and modeling energy fluxes above the floor of a homogenous and heterogenous conifer forest. Agricultural and Forest Meteorology, 102 (2– 3), 187– 206.
  • Beringer J., Chapin III F.S., Thompson C.C., McGuire A.D. 2005. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricultural and Forest Meteorology, 131 (3– 4), 143– 161.
  • Betts A.K., Desjardins R.L., Worth D. 2007. Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agricultural and Forest Meteorology, 142 (2– 4), 156– 169.
  • Eck T.F., Deering D.W. 1992. Canopy albedo and transmittance in a spruce-hemlock forest in mid-September. Agricultural and Forest Meteorology, 59 (3– 4), 237– 248.
  • Falge E., Reth S., Brüggemann N., Butterbach-Bahl K., Goldberg V., Oltchev A., Schaaf S., Spindler G., Stiller B., Queck R., Köstner B., Bernhofer Ch. 2005. Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany. Ecological Modelling, 188 (2– 4), 174– 216.
  • Flerchinger G.N., Xiao W., Sauer T.J., Yu Q. 2009. Simulation of within-canopy radiation exchange. NJAS – Wageningen. Journal of Life Sciences, 57 (1), 5– 15.
  • Fussler J.S. 1998: On the Interaction between Atmosphere and Vegetation under Increasing Radiative Forcing: A Model Analysis (Dissertation). Zurich, Swiss Federal Institute of Technology.
  • Gavilan P., Berengena J., Allen R.G. 2007. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions. Agricultural Water Management, 89 (3), 275– 286.
  • Gholz H.L., Clark K.L., 2002. Energy exchange across a chronosequence of slash pine forests in Florida. Agricultural and Forest Meteorology, 112 (2), 87– 102.
  • Jarvis P.G., James G.B., Landsberg J.J. 1975. Coniferous forest. Vegetation and the Atmosphere (ed.: J.L. Monteith), Vol. 2, Academic Press, London-New York-San F rancisco, 171– 240.
  • Marek M.V., Šprtová M., Špunda V., Kalina J. 1999. Response of sun versus shade foliage photosynthesis to radiation in Norway spruce. Phyton, 39, 131– 138.
  • Marková I., Janouš D., Marek M. 2006. Total net radiation of the mountain Norway spruce stand at Bílý Kříž (the Czech Republic). Ekológia (Bratislava), 25 (4), 352– 365.
  • McCaughey J.H. 1978. Estimation of net radiation for a coniferous forest, and the effects of logging on net radiation and the reflection coefficient. Canadian Journal of Forest Research, 8 (4), 450– 455.
  • Monteith J.L., Unsworth M.H. 1990. Principles of Environmental Physics. Edward Arnold, Hodder Headline PLC, London.
  • Oliphant A.J., Spronken-Smith R.A., Sturman A.P. 2003. Spatial variability of surface radiation fluxes in mountainous terrain. Journal of Applied Meteorology, 42, 113– 118.
  • Oliphant A., Susann C., Grimmond B., Schmidt H.-P., Wayson C.A. 2006. Local-scale heterogeneity of photosynthetically active radiation (PAR), absorbed PAR and net radiation as a function of topography, sky conditions and leaf area index. Remote Sensing of Environment, 103 (3), 324– 337.
  • Rannik Ü., Kolari P., Vesala T., Hari P. 2006. Uncertainties in measurement and modelling of net ecosystem exchange of a forest. Agricultural and Forest Meteorology, 138 (1– 4), 244– 257.
  • Šprtová M., Marek M.V. 1999. Response of photosynthesis to radiation and intercellular CO2 concentration in sun and shade shoots of Norway spruce. Photosynthetica, 37, 442– 445.
  • Tajchman S.J. 1972. The radiation and energy balances of coniferous and deciduous forests. Journal of Applied Ecology, 9, 359– 375.
  • Urban O., Šprtová M., Košancová M., Tomášková I., Lichtenthaler H.K., Marek M.V. 2008. Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. Tree Physiology, 28, 1189– 1197.
  • Vaníček J. 1994. Description of the radiation field of global radiation at the Czech Republic area in the 1984– 1993. NPK, Praha (in Czech).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5280fb0d-1e3e-4508-87cd-d6da2edbbc8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.