PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 21 | 4 |

Tytuł artykułu

Aquaporins in physiology and pathology

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Numerous data have indicated that water permeability in living systems is greater than it could be explained by simple diffusion. Electron microscope observations have identified special structures presumed to be water channels. The molecular identity of the first water channel was determined in the early 1990s and named Aquaporin 1 (AQP1). It has been now well documented that aquaporins are members of a large family of small (about 28- kDa/ monomer) integral membrane proteins which exist as tetramers, with each subunit containing its own pore. Mammalian AQPs are believed to fold and assemble in the endoplasmic reticulum before being transported to the cell surface. To date 13 AQP’s have been identified in mammals (AQP0-AQP12); however, functional studies have identified a subgroup of AQPs, i.e. AQP 3, 7, 9 and 10, responsible for both water and glycerol transport, named aquaglyceroporins. Further studies have demonstrated that, apart from water and glycerol, AQPs 3, 7, 9 also transport ammonia and urea. Additionally, AQPs 11 and 12 named superaquaporins, were localized inside the cells, but until now their functions have not been fully elucidated. AQP defects in the human adipose tissue and liver are recognized as a possible cause of obesity. Numerous data indicate that AQPs contribute to carcinogenesis. Data on the effects of physical activity on AQP are scarce; however, it has been recently demonstrated that AQP expression in skeletal muscle and adipose tissue, but also in the brain, respond to physical stress. Thus, it seems possible that in near future AQP studies will provide more knowledge concerning preventive effects of physical exercise in medicine. Furthermore, there is a growing interest in chemicals affecting AQPs, and it could not be excluded that AQP-targeting drugs will be used in medical practice.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

4

Opis fizyczny

p.185-194,fig.,ref.

Twórcy

  • Department of Biology and Biochemistry, The Jozef Pilsudski University of Physical Education, Warsaw, Poland

Bibliografia

  • 1. Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006; 3: 5-13.
  • 2. Carbrey JM, Agre P. Aquaporins. Handb Exp Pharmacol. 2009; 190: 4-28.
  • 3. Agre P, Sasake S, Chrispeels MJ. Aquaporins, a family of membrane water channels. Am J Physiol. 1993; 265: F461.
  • 4. Borgnia M, Nilsen S, Engel A, et al. Cellular and molecular biology of the aquaporin water channels. Ann Rev Biochem. 1999; 68: 425-458.
  • 5. King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nature Rev Mol Cel Biol. 2004; 5: 687-698.
  • 6. Guang XG Su WH, Yi E, et al. NPA motifs play a key role in plasma membrane targeting of aquaporin-4. IUBMB Life. 2010; 62: 222-226.
  • 7. Pitonzo D, Skach WR. Molecular mechanism of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocation. Biochim Biophys Acta. 2006; 1758: 976-988.
  • 8. Conner AC, Bill RM, Conner MT. An emerging consensus on aquaporin translocation as a regulatory mechanism. Mol Membr Biol. 2012; 18: 22-33.
  • 9. Hara-Chikuma M, Verkamn AS. Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci. 2006; 63: 1386-1392.
  • 10. Litman T, S0gaard R, Zeuthen T. Ammonia and urea permeability of mammalian aquaporins. Handb Exp Pharmacol. 2009; 190: 327-360.
  • 11. Ishibashi K, Tnaka Y, Morishita Y. The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta. 2014; 1840: 1507-1512.
  • 12. Calvanese L, Pellegrini-Calace M, Oliva R. In silico study of human AQP11 and AQP12 channels. Protein Sci. 2013; 22: 455-466.
  • 13. Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. 2014; 1840: 1596-1604.
  • 14. Veal EA, Day AM, Morgan BA, et al. Hydrogen peroxide sensing and signaling. Molecular Cell. 2007; 26: 1-14.
  • 15. Boron WF. Sharpey-Schafer lecture gas channel. Exp Physiol. 2010; 95: 1107-1130.
  • 16. Kaldenhoff R, Kai L, Uehlein N. Aquaporins and membrane diffusion of CO2 in living organism. Biochim Biophys Acta. 2013; 1840: 1592-1595.
  • 17. Geyer RR, Musa-Aziz R, Qin X, et al. Relative CO2 / NH3 selectivities of mammalian aquaporins 0-9. Am J Physiol Cell Physiol. 2013; 304: C985-C994.
  • 18. Agre P, King LS, Yasui M, et al. Aquaporin water channels - from atomic structure to clinical medicine. J Physol. 2002; 542: 3-16.
  • 19. Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005; 118: 3225¬3232.
  • 20. Ma T, Verkman AS. Aquaporin water channels in gastrointestinal physiology. J Physiol. 1999; 517; 317¬326.
  • 21. Laforenza U, Gastaldi G, Polimeni M, et al. Aquaporin-6 is expressed along the rat gastrointestinal tract and upregulated by feeding in the small intestine. BMC Physiology. http://www.biomedcentral.com/1472- 6793/9/18.
  • 22. Thiagarajah JR, Zhao D, Verkman AS. Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse model of colitis. Gut. 2007; 56: 1529-1535.
  • 23. Nakano M, Koyama Y, Nogami H, et al. Enhanced aquaporin 8 expression after subtotal colectomy in rat. Open Journal of Gastroenterology. 2013; http://www. scirp.org/journal/ojgasa.
  • 24. Koyama Y, Kameyama H, Sakata J, et al. Aquaporin 8 mRNA expression after intestinal resection in rat. Open Journal of Gastroenterology. 2014; http://www.scirp.org/ journal/ojgasa.
  • 25. Fischer H, Stenling R, Rubio C, et al. Differential expression of aquaporin 8 in human colonic epithelial cells and colorectar cancer. BMC Physiology. 2011; http://www.biomedcentral.com/1472-6793/1/1.
  • 26. Zahn A, Moehle Ch, Langmann T, et al. Aquaporin-8 expression is reduced in ileum and induced in colon of patients with ulcerative colitis. Worl Gastroenterol. 2007; 21: 1687-1695.
  • 27. Verkamn AS, Ruiz-Ederra J, Levin MH. Functions of aquaporins in the eye. Prog Retin Eye Res. 2008; 27: 420-433.
  • 28. Chepelinsky AB. Structural function of MIP/aquaporin 0 in the eye lens: genetic defects ladto congenital inherited cataracts. Handb Exp Pharmacol. 2009; 190: 265-297.
  • 29. Yu Y, Yu Y, Chen P, et al. A novel MIP gene mutation associated with autosomal dominant congenital cataracts in a Chinese family. BMC Medical Genetics. 2014; http://www.biomedcentral/com/1471-2350/15/6.
  • 30. Kreda SM, Gynn MC, Fenstermacher DA, et al. Expression and localization of epithelial aquaporins in the human adults. Am J Resp Cell Mol Biol. 2001; 24: 224-234.
  • 31. Verkman AS. Role of aquaporins in lung liquid physiology. Resp Physiol Neurobiol. 2007; 159: 324-330.
  • 32. Ablimit A, Hasan B, Lu W, et al. Changes in water channel aquaporin 1 and aquaporin 5 in the small airways and the alveoli in a rat asthma model. Micron. 2013; 45: 68-73.
  • 33. King LS, Nielsen S, Agre P, et al. Decreased pulmonary vascular permeability in aquaporin-1-null mice. PNAS 2002; 99: 1059-1063.
  • 34. Zhao R, Liang X, Zhao M, et al. Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs. PLOS One. 2014; 9: e109725.
  • 35. Ma T, Yang B, Gillespie A, et al. Severely impaired urinary concentracting ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem. 1998; 273: 4296-4299.
  • 36. Schnermann J, Chou CL. Traynor T, et al. Defective tubular fluid reabsorption in transgenic aquaporin-1 null mice. PNAS. 1998; 95: 9660-9664.
  • 37. Noda Y, Sohara E, Ohta E, et al. Aquaporins in kidney pathophysiology. Nat Rev Nephrol. 2010; 6: 168-178.
  • 38. Cheong HI, Cho SJ, heng SH, et al. Two novel mutations in the aquaporin 2 gene in a girl with congenital diabetes insipidus. J Korean Med Sci. 2005; 20: 1076-1078.
  • 39. Bockenhauer D, Bichet DG, et al. Inherited secondary diabetes insipidus: concentrating on humans. Am J Physiol Renal Physiol. 2013; 304: F1037-F1042.
  • 40. Delporte Ch. Aquaporins in salivary glands and pancreas. Biochem Biophys Acta. 2014: 1840: 1524¬1532.
  • 41. Soyfoo MS, Konno A, Bolaky N, et al. Link between inflammation and aquaporin-5 distribution in submandibular gland in Sjögren syndrome. Oral Diseases. 2012; 18: 568-574.
  • 42. Hara M, Ma T, Verkman AS. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem. 2002; 277: 46616-46621.
  • 43. Hara M, Verkman AS. Glycerol replacement correct defective skin hydration, elasticity, and barrier function in aquaporin-3 -deficient mice. PNAS. 2003; 100: 7360-7365.
  • 44. Blaydin DC, Lind LK, Plagnol V, et al. Mutations in AQP5, encoding a water-channel protein cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am J Human Genet. 2013; 93: 330-335.
  • 45. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview. Structure, regulation, and clinical implications. Neurobiol Dis. 2006; 16: 1-13.
  • 46. Li X, Kong H, Wu W, et al. Aquaporin-4 maintains ependymal integrity in adult mice. Neurosci. 2009; 162: 67-77.
  • 47. Skucas V, Mathew IB, Yang J, et al. Impairement of select forms of spatial memory and neuroprophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci. 2011; 27: 6392-6397.
  • 48. Katada R, Akdemir G, Asavapanumas N, et al. Greatly improved survival and neuroprotection in aquaporin- 4-knockout mice following global cerebral ischemia. FASEB. 2011; 28: 705-714.
  • 49. Papadopoulos MC, Verkman AS. Aquaporin-4 and neuromyelitis optica. Lancet Neurol. 2012; 11: 535-544.
  • 50. Matsuoka T, Suzuki SO, Iwaki T, et al. Aquaporin astrocytopathy in Balo disease. Acta Neuropathol. 2010; 120: 651-660.
  • 51. Hermo L, Smith ChE. Thirsty business: Cell, region, and membrane specificity of aquaporins in the testis, efferent ducts, and epidydymis and factors regulating their expression. J Androl. 2011; 32: 565-575.
  • 52. Sha XY, Xiong ZF, Liu HS, et al. Pregnant phenotype in aquaporin 8-deficient mice. Acta Pharmacol Sin. 2011; 32: 840-844.
  • 53. Skowronski MT. Distribution and quantitative changes in amounts of aquaporin 1,5 and 9 in the pig uterus during estrous cycle and early pregnancy. Reprod Biol Endocrinol. 2010; 8: 109, http://www.rbej.com/ content/8/1/109.
  • 54. Thoroddsen A, Dahm-Kähler P, Lind AK, et al. The water permeability channels aquaporins 1-4 are differentially expressed in granulosa and theca cells of the preovulatory follicle during precise stages of human ovulation. J Clin Endocrinol Metab. 2011; 96: 1021-1028.
  • 55. Rutkovsky A, Valen G, Vaage J. Cardiac aquaporins. Basic Res Cardiol. 2013; 108: 393-410.
  • 56. Zhang HZ, Kim MH, Lim JH, et al. Time-dependent expression patterns of cardiac aquaporins following myocardial infarction. J Korean Med Sci. 2013; 28: 402-408.
  • 57. Cheng YS, Tang Q, Dai DZ, et al. AQP4 knockout mice manifest abnormal expression of calcium handling proteins possibly due to exacerbating pro-inflammatory factors in the heart. Biochem Pharmcol. 2012; 83: 97¬107.
  • 58. Hibuse T, Maeda N, Nakatsuji H, et al. The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc Res. 2009; 83: 34-41.
  • 59. Montiel V, Gomez LE, Bouzin C, et al. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoid relaxation. Pflügers Arch-Eur J Physiol. 2014; 466: 237-251.
  • 60. Matsumura K, Chang BH-J, Fujimiya M, et al. Aquaporin 7 is a ß-cell protein and regulator of intraislets glycerol content and glycerol kinase activity, ß-cell mass, and insulin production and secretion. Mol Cel Biol. 2007; 27: 6026-6037.
  • 61. Louchami K, Best L, Brown P, et al. A new role for aquaporin 7 in insulin sensitivity. Cell Physiol Biochem. 2012; 12: 65-74.
  • 62. Ko SBH, Mizuno N, Yatabe Y, et al. Aquaporin 1 water channel is over-expressed in the plasma membranes of pancreatic ducts in patients with autoimmune pancreatitis. J Med Invest. 2009; (Suppl.): 318-321.
  • 63. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Progess Lipid Res. 2009; 48: 275-297.
  • 64. Landau BR, Hahren J, Chandramouli V, et al. Contribution of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996; 98: 378-385.
  • 65. Kuriyama H, Kawamoto S, Ishida N, et al. Molecular cloning and expression of a novel aquaporin from adipose tissue with glycerol permeability. Biochim Biophys Res Commun. 1997; 241: 53-58.
  • 66. Kishida K, Kuriyama H, Funahashi T, et al. Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem. 2000; 275: 20896-20902.
  • 67. Maeda N, Funahashi T, Hibuse T, et al. Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. PNAS. 2004; 101: 17801-17806.
  • 68. Hara-Chukuma M, Soharas E, Ri T, et al. Pogressive adipocyte hypertrophy in aquaporin-7-deficient mice. J Biol Chem. 2005; 280: 15493-15496.
  • 69. Hibuse T, Maeda N, Funahashi T, et al. Aquaporin 7 deficiency is associated with development pf obesity through activation of adipose glycerol kinase. PNAS. 2005; 102: 10993-10998.
  • 70. Marrades MP, Milagro FI, Martinez JA, et al. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem Biophys Res Commun. 2006; 339: 785-789.
  • 71. Ceperuelo-Mallafrè V, Miranda M, Chacón R, et al. Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes. J Clin Endocrinol Metab. 2007; 92: 3640-3645.
  • 72. Madeira A, Camps M, Zorzano A, et al. Biophysical assessment of human aquaporin-7 as a water and glycerol channel in 3T3-L1 adipocytes. PLOS One. 2013; 8: e83442.
  • 73. Miranda M, Escote V, Ceperuelo-Mallafrè V, et al. Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 23 diabetes: differences and similarities between depots. J Clin Endocrinol Metab. 2010; 95: 3470-3479.
  • 74. Laforenza U, Scaffino MF, Gastaldi G. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLOS One. 2013; 8: e54474.
  • 75. Madeira A, Fernàndez-Valedo S, Camps M, et al. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity. 2014; 22: 2010-2017.
  • 76. Sztalryd C, Xu G, Dorward H, et al. Perilipin A is essentail for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol. 2003; 161: 1093-1103.
  • 77. Wang H, Bell M, Sreenevasan U, et al. Unique regulation of adipose triglyceride lipase (ATGL) by perilipin-5, a lipid droplet-associated protein. J Biol Chem. 2011; 286: 15707-15715.
  • 78. Portincasa P, Palasciano G, Svelto M, et al. Aquaporins in the hepatobiliary tract. Which, where, and what they do n health and disease. Eur J Clin Invest. 2007; 38: 1-10.
  • 79. Kuriyama H, Shimomura I, Kishida K, et al. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes. 2002; 51: 2915-2921.
  • 80. Rodriguez A, Catalan V, Gomez-Ambrosi J, et al. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab. 2011; 96: E586-E597.
  • 81. Hashem M. Biochemical and expression studies on Aquaporin 9 (AQP9) in wild and AQP9 knockout mice. Veterinski Arhiv. 2010; 80: 93-112.
  • 82. Calamita G, Gena P, Rosito A, et al. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of gluconeogenic glycerol. Biol Cell. 2012; 104: 342-351.
  • 83. Cai C, Wang C, Ji W, et al. Knockdown of hepatic aquaglyceroporin-9 alleviates high fat diet-induced non-alcoholic fatty liver disease. Int Immunopharmacol. 2013; 15: 550-556.
  • 84. Hung KC, Hsieh PM, Hsu CY. Expression of aquaporins in rat liver regeneration. Scand J Gastroenterol. 2012; 47: 676-685.
  • 85. Frigeri A, Nicchia GP, Verbavatz JM. Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J Clin Invest. 1998; 102: 695-703.
  • 86. Fregeri A, Nicchia GP, Balena R. Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4. FASEB J. 2004; 18: 905-907.
  • 87. Basco D, Nicchia GP, D'Alessandro A, et al. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathway and calcium handling. PLOS One. 2011; 6; e1925.
  • 88. Basco D, Blaauw B, Pisani F. et al. AQP4-dependent water transport plays a functional role in exercise- induced skeletal muscle adaptations. PLOS One. 2013; 8: e58712.
  • 89. Lebeck J, 0stergard T, Rojek A. Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue. Acta Diabetol. 2012; 49 (Suppl. 1): S251-S226.
  • 90. Wang L, Chen Y. Effect of exhaustive swimming on the kidney urinary concentration function. Lecture Notes in Electrical Engineering. 2013; 259: 23-31.
  • 91. He Z, Wang X, Wu Y, et al. Treadmill pre-training ameliorates brain edema in ischemic stroke via down- regulation of aquaporin-4: An MRI study in rats. PLOS One. 2014; 9: e84602.
  • 92. Crosbie RH, Divico SA, Flanagan JD, et al. Characterization of aquaporin-4 in muscle and muscular dystrophy. FASEB J. 2002; 16: 943-949.
  • 93. Wakayama Y. Aquaporin expression in normal and pathological skeletal muscle: A brief review with focus on AQP4. J Biomed Biotechnol. 2010; doi: 10.1155/2010/731569.
  • 94. Wakayama Y. Skeletal muscle regeneration may be enhanced by over-expression of aquaporin 1 in intramuscular capillary endothelial cells. Med Hypotheses. 2006; 68: 856-859.
  • 95. van Rosendal SP, Osborne MA, Fassett RG, et al. Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med. 2010; 40: 113-129.
  • 96. van Rosendal SP, Strobel NA, Osborne MA, et al. Peformance benefits of rehydration with intravenous fluid and oral glycerol. Med Sci Sports Exerc. 2012; 44: 1780-1790.
  • 97. Beis LY, Polyviou T, Malkova D. et al. The effects of creatine and glycerol hyperhydration on running economy in well trained endurance runners. J Int Soc Sports Nutr. 2011; 8, http://www.jissn.com/ content/8/1/24.
  • 98. Kong Ch-S, Kim J-A, Bak S-S, et al. Anti-obesity effects of carboxymethyl chitin by AMPK and aquaporin-7 pathway in 3T3-L1 adipocytes. J Nutr Biochem. 2011; 22: 276-281.
  • 99. Martins AP, Marrone. A, Cincetta A, et al. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by gold-based compounds. PLOS One. 2012; 7; e37435.
  • 100. Seeliger D, Zapater C, Krenc D, et al. Discovery of novel human aquaporin-1 blockers. ACS Chem Biol. 2013; 8: 249-256.
  • 101. Trandtrantip L, Zhang H, Saadoun S, et al. Anti- aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol. 2012; 71: 314-322.
  • 102. Huber VJ, Tsujita M, Nakada T. Aquaporins in drug discovery and pharmacotherapy. Mol Asp Med. 2012; 33: 691-703.
  • 103. Papadopoulos MC, Sadoun S. Key roles of aquaporins in tumor biology. Biochim Biophys Acta. 2014 (doi: 10.1016.j.bbamem.2014.09.001).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-527da2b8-9aa5-47e0-8658-7fd91a734a15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.