PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 70 | 4 |

Tytuł artykułu

The claustrum: three-dimensional reconsstruction, photorealistic imaging, and stereotactic approach

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was to reveal the computer-aided three-dimensional (3D) appearance, the dimensions, and neighbourly relations of the claustrum and make a stereotactic approach to it by using serial sections taken from the brain of a human cadaver. The Snake technique was used to carry out 3D reconstructions of the claustra and surrounding structures. The photorealistic imaging and stereotactic approach were rendered by using the Advanced Render Module in Cinema 4D software. The claustrum takes the form of the concavity of the insular cortex and the convexity of the putamen. The inferior border of the claustrum is at about the same level as the bottom edge of the insular cortex and the putamen, but the superior border of the claustrum is at a lower level than the upper edge of the insular cortex and the putamen. The volume of the right claustrum, in the dimensions of 35.5710 mm x 1.0912 mm x 16.0000 mm, was 828.8346 mm³, and the volume of the left claustrum, in the dimensions of 32.9558 mm x 0.8321 mm x 19.0000 mm, was 705.8160 mm³. The surface areas of the right and left claustra were calculated to be 1551.149697 mm2 and 1439.156450 mm² by using Surfdriver software. This is the first study reporting the 3D reconstruction and photorealistic imaging of the claustrum of the human brain. This technique enables us to determine the spatial coordinates of the target tissues and to rehearse the surgical procedures for preoperative trajectory planning by using virtual surgery. We believe that this study will be a really useful anatomic guide for neuroscientists and neurosurgeons interested in the claustrum. (Folia Morphol 2011; 70, 4: 228–234)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

4

Opis fizyczny

p.228-234,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Faculty of Medicine, Ataturk University, 25240 Erzurum,,Turkey

Bibliografia

  • 1. Ackerman MJ, Banvard RA (2000) Imaging outcomes from The National Library of Medicine’s Visible Human Project. Comput Med Imag Graph, 24: 125–126.
  • 2. Akselrod-Ballin A, Galun M, Gomori JM, Brandt A, Basri R (2007) Prior knowledge driven multiscale segmentation of brain MRI. Med Imag Comput Comput Assist Interv, 10 (Part 2): 118–126.
  • 3. Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol, 189: 573–591.
  • 4. Amaral DG, Insausti R (1992) Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Exp Brain Res, 88: 375–388.
  • 5. Apuzzo ML, Chandrasoma PT, Cohen D, Zee CS, Zelman V (1987) Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery, 20: 930–937.
  • 6. Arikuni T, Kubota K (1985) Claustral and amygdaloid afferents to the head of the caudate nucleus in macaque monkeys. Neurosci Res, 2: 239–254.
  • 7. Ashwell KW, Hardman C, Paxinos G (2004) The claustrum is not missing from all monotreme brains. Brain Behav Evol, 64: 223–241.
  • 8. Baizer JS, Lock TM, Youakim M (1997) Projections from the claustrum to the prelunategyrus in the monkey. Exp Brain Res, 113: 564–568.
  • 9. Ballinger JR (2009) MRI Artefacts. URL:http://www.mritutor.org/mritutor/artifact.htm [accessed July 2011].
  • 10. Banati RB, Goerres GW, Tjoa C, Aggleton JP, Grasby P (2000) The functional anatomy of visual-tactile integration in man: a study using positron emission tomography. Neuropsychologia, 38: 115–124.
  • 11. Bennett CM, Baird AA (2006) Anatomical changes in the emerging adult brain: a voxel-based morphometry study. Human Brain Mappi, 27: 766–777.
  • 12. Berns GS, Chappelow J, Cekic M, Zink CF, Pagnoni G, Martin-Skurski ME (2006) Neurobiological substrates of dread. Science, 312: 754–758.
  • 13. Bonilha L, Cendes F, Rorden C, Eckert M, Dalgalarrondo P, Li LM, Steiner CE (2008) Gray and white matter imbalance — typical structural abnormality underlying classic autism? Brain Dev, 30: 396–401.
  • 14. Butler AB, Molnár Z, Manger PR (2002) Apparent absence of claustrum in monotremes: implications for forebrain evolution in amniotes. Brain Behav Evol, 60: 230–240.
  • 15. Chachich ME, Powell DA (2004). The role of claustrum in Pavlovian heart rate conditioning in the rabbit (Oryctolagus cuniculus): anatomical, electrophysiological, and lesion studies. Behav Neurosc, 118: 514–525.
  • 16. Corso JJ, Tu Z, Yuille A, Toga A (2007) Segmentation of sub-cortical structures by the graph-shifts algorithm. Inf Process Med Imag, 20: 183–197.
  • 17. Crick FC (1994) The astonishing hypothesis. Charles Scribner’s Sons, New York.
  • 18. Crick FC, Koch C (2005). What is the function of the claustrum? Philos Trans R Soc Lond B Biol Sci, 360: 1271–1279.
  • 19. Davis WB (2008) The claustrum in autism and typically developing male children: a quantitative MRI study. Young University, Brigham.
  • 20. Dubroff JG, Ficicioglu C, Segal S, Wintering NA, Alavi A, Newberg AB (2008) FDG-PET findings in patients with galactosaemia. J Inherited Metab Dis, 31: 533–539.
  • 21. Edelstein LR, Denaro FJ (2004) The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell Mol Biol (Noisy-legrand), 50: 675–702.
  • 22. Fernández-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, Alvarez-Linera J (2008). The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg, 108: 764–774.
  • 23. Geiger B (1993) Three dimensional modeling of human organs and its application to diagnosis and surgical planning, Ph.D. Theses, INRIA, France.
  • 24. Hadjikhani N, Roland PE (1998) Cross-modal transfer of information between the tactile and the visual representations in the human brain: a positron emission tomographic study. J Neurosci, 18: 1072–1084.
  • 25. Haines DE (2000) Neuroanatomy: an atlas of structures, sections, and systems. 5th Ed. Lippincott Williams and Williams, Philadelphia, PA.
  • 26. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol, 264: 396–408.
  • 27. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex, 17: 951–961.
  • 28. Kalaitzakis ME, Christian LM, Moran LB, Graeber MB, Pearce RK, Gentleman SM (2009) Dementia and visual hallucinations associated with limbic pathology in Parkinson’s disease. Parkinsonism Relat Disord, 15: 196–204.
  • 29. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) Striatal beta-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol, 67: 155–161.
  • 30. Kalaitzakis ME, Pearce RK, Gentleman SM (2009) Clinical correlates of pathology in the claustrum in Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett, 461: 12–15.
  • 31. Kapakin S (2011) Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project. Folia Morphol, 70: 33–40.
  • 32. Kapakin S, Demiryurek D (2009) The reproduction accuracy for stereolithographic model of the thyroid gland derived from the visible human dataset. Saudi Med J, 30: 887–892.
  • 33. Kievit J, Kuypers HG (1975) Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res, 85: 261–266.
  • 34. Kowiański P, Dziewiatkowski J, Kowiańska J, Moryś J (1999) Comparative anatomy of the claustrum in selected species: a morphometric analysis. Brain Behav Evol, 53: 44–54.
  • 35. Lee JY, Lunsford LD, Subach BR, Jho HD, Bissonette DJ, Kondziolka D (2000). Brain surgery with image guidance: current recommendations based on a 20-year assessment. Stereotact Funct Neurosurg, 75: 35–48.
  • 36. Lerner A, Bagic A, Hanakawa T, Boudreau EA, Pagan F, Mari Z, Bara-Jimenez W, Aksu M, Sato S, Murphy DL, Hallett M (2009) Involvement of insula and cingulate cortices in control and suppression of natural urges. Cereb Cortex, 19: 218–223.
  • 37. Li YJ, Ga SN, Huo Y, Li SY, Gao XG (2007) Characteristics of hippocampal volumes in healthy Chinese from MRI. Neurol Res, 29: 803–806.
  • 38. Mathur BN, Caprioli RM, Deutch AY (2009) Proteomic analysis illuminates a novel structural definition of the claustrum and insula. Cereb Cortex, 19: 2372–2379.
  • 39. Moryś J, Berdel B, Maciejewska B, Król J, Dziewiatkowski J (1996) Loss of neurons in the claustrum of aging brain. Folia Neuropathol, 34: 97–101.
  • 40. Moryś J, Berdel B, Maciejewska B, Sadowski M, Sidorowicz M, Kowiańska J, Narkiewicz O (1996) Division of the human claustrum according to its architectonics and morphometric parameters. Folia Morphol, 55: 69–82.
  • 41. Moryś J, Bobiński M, Kozłowski P, Dziewiatkowski J, Switka A, Wiśniewski H, Narkiewicz O (1993) The pathology of the claustrum in Galloway syndrome indicates the existence of claustro-entorhinal pathway. Folia Morphol, 52: 1–9.
  • 42. Morys J, Bobinski M, Wegiel J, Wisniewski HM, Narkiewicz O (1996) Alzheimer’s disease severely affects areas of the claustrum connected with the entorhinal cortex. Journal fur Hirnforschung, 37: 173–180.
  • 43. Morys J, Narkiewicz O, Wisniewski HM (1993) Neuronal loss in the human claustrum following ulegyria. Brain Res, 616: 176–180.
  • 44. Naghavi HR, Eriksson J, Larsson A, Nyberg L (2007) The claustrum/insula region integrates conceptually related sounds and pictures. Neurosci Lett, 422: 77–80.
  • 45. Naqvi NH, Rudrauf D, DamasioH, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science, 315: 531–534.
  • 46. Navamar MR, Sadeghi Y, Haghir H (2005) A new division of the human claustrum basis on the anatomical landmarks and morphological findings. J Iran Anat Scien, 3: 57–66.
  • 47. Olson IR, Gatenby JC, Gore JC (2002). A comparison of bound and unbound audio-visual information processing in the human cerebral cortex. Brain Res Cogn Brain Res, 14: 129–138.
  • 48. Pearson RC, Brodal P, Gatter KC, Powell TP (1982) The organization of the connections between the cortex and the claustrum in the monkey. Brain Res, 234: 435–441.
  • 49. Pedraza O, Bowers D, Gilmore R (2004) Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J Int Neuropsychol Soc, 10: 664–678.
  • 50. Setzer M, Herminghaus S, Marquardt G, Tews DS, Pilatus U, Seifert V, Zanella F, Lanfermann H (2007) Diagnostic impact of proton MR-spectroscopy versus image-guided stereotactic biopsy. Acta Neurochir, 149: 379–386.
  • 51. Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci, 10: 3171–3193.
  • 52. Sperner J, Sander B, Lau S, Krude H, Scheffner D (1996) Severe transitory encephalopathy with reversible lesions of the claustrum. Pediatric Radiol, 26: 769–771.
  • 53. Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. JAMIA, 3: 118–130.
  • 54. Stein MB, Simmons AN, Feinstein JS, Paulus MP (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry, 164: 318–327.
  • 55. Uzunbaş MG, Soldea O, Unay D, Cetin M, Unal G, Erçil A, Ekin A (2010) Coupled nonparametric shape and moment-based intershape pose priors for multiple basal ganglia structure segmentation. IEEE Trans Med Imag, 29: 1959–1978.
  • 56. Webster MJ, Bachevalier J, Ungerleider LG (1993) Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. J Comp Neurol, 335: 73–91.
  • 57. Yang J, Staib LH, Duncan JS (2004) Neighbor-constrained segmentation with level set based 3-D deformable models. IEEE Trans Med Imag, 23: 940–948.
  • 58. Zhang X, Hannesson DK, Saucier DM, Wallace AE, Howland J, Corcoran ME (2001) Susceptibility to kindling and neuronal connections of the anterior claustrum. J Neurosc, 21: 3674–3687.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-526ad2cd-4957-4f54-805a-a4014d88064f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.