PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 10 | 2 |

Tytuł artykułu

Fringe for foraging? Histology of the bristle-like hairs on the tail membrane of the gleaning bat, Myotis nattereri

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Many bats are specialized to detect and capture arthropods from vegetation. As echoes from sitting arthropods and vegetation background overlap strongly, it is difficult for those bats to detect prey by echolocation alone. Within the largest genus of bats, Myotis, at least three species from different sub-clades show a characteristic fringe of hairs on the trailing edge of their uropatagium. All three species are capable of gleaning arthropods from vegetation with this tail membrane. Phylogenetic analyses strongly suggest that these specializations evolved convergently. Therefore, one can hypothesize that the hairs at the rim of the tail membrane have an important tactile and/or mechanical function for gleaning prey from substrate. To assess this question, we used light microscopic techniques to investigate the morphology and innervation of the bristle-like hair fringe, and for comparison, the structure of sensory mystacial vibrissae in Myotis nattereri. The results revealed that the fringe possesses two types of hair: larger guard hairs and smaller vellus hairs. Both hair types are well innervated underneath their sebaceous glands. They are encircled by a piloneural complex, which functions as a stretch and tension receptor. Although the bristle-like hairs are clearly not vibrissal follicle-sinus-complexes, their position, morphology and innervation strongly support a sensory function for prey detection and capture. An additional mechanical function, e.g., brushing prey off substrate, is plausible.

Wydawca

-

Rocznik

Tom

10

Numer

2

Opis fizyczny

p.303-311,fig.,ref.

Twórcy

autor
  • Sensory Ecology Group, Max Planck Institute for Ornitology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
autor
  • Department of Cellular and Molecular Anatomy (Anatomy III), J. W. Goethe - University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
autor
  • Department of Biosciences, University of Rostock, Albert-Eistein-Str.3, 18059 Rostock, Germany
  • Sensory Ecology Group, Max Planck Institute for Ornitology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany

Bibliografia

  • 1. K. H. Andres 1966. Über die Feinstruktur der Rezeptoren an Sinushaaren. Zeitschrift für Zellforschung 75:339–365. Google Scholar
  • 2. R. Arlettaz 1996. Foraging behavior of the gleaning bat Myotis nattereri (Chiroptera, Vespertilionidae) in the Swiss Alps. Mammalia 60:181–186. Google Scholar
  • 3. D. Biemesderfer, B. L. Munger, J. Binck, and R. Dubner . 1978. The pilo-Ruffini complex: a non-sinus hair associated slowly-adapting mechanoreceptor in primate facial skin. Brain Research 142:197–222. Google Scholar
  • 4. S. Crish, F. L. Rice, T. Park, and C. Comer . 2003. Somato-sensory organization and behavior in naked mole rats I: body vibrissae form a stereotyped sensory array that mediates orientation to tactile stimuli. Brain, Behavior and Evolution 62:141–151. Google Scholar
  • 5. C. Dietz, O. von Helversen, and D. Nill . 2007. Handbuch der Fledermäuse Europas und Nordwestafrikas. Franckh-Kosmos Verlags GmbH & Co. KG. Stuttgart. 399. pp. Google Scholar
  • 6. J. Dörfl 1982. The musculature of the mystacial vibrissae of the white mouse. Journal of Anatomy 135:147–154. Google Scholar
  • 7. S. Ebara, K. Kumamoto, T. Matsuura, J. E. Mazurkiewicz, and F. Rice . 2002. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. The Journal of Comparative Neurology 449:103–119. Google Scholar
  • 8. M. B. Fenton and W. Bogdanowicz . 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology 80:1004–1013. Google Scholar
  • 9. J. S. Findley 1972. Phenetic relationships among bats of the genus Myotis. Systematic Zoology 21:31–52. Google Scholar
  • 10. B. T. Fundin, J. Arvidsson, H. Aldskogius, O. Johansson, S. N. Rice, and F. L. Rice . 1997. Comprehensive immunofluorescence and lectin binding analysis of intervibrissal fur innervation in the mystacial pad of the rat. Journal of Comparative Neurology 385:185–206. Google Scholar
  • 11. P. J. Glass and W. L. Gannon . 1994. Description of M. uropataginalis (a new muscle), with additional comments from a microscopy study of the uropatagium of the fringed Myotis (Myotis thysanodes). Canadian Journal of Zoology 72:1752–1754. Google Scholar
  • 12. M. Haffner 1998. The size of sebaceous glands in relation to the size of hair follicles on the heads of some small mammals (Insectivora, Chiroptera, Rodentia). Annals of Anatomy 180:165–171. Google Scholar
  • 13. Z. Halata 1993. Sensory innervation of the hairy skin (lightand electronmicroscopic study). Journal of Investigative Dermatology 101:75–81. Google Scholar
  • 14. I. Horáček and V. Hának . 1983–1984. Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis 21–22:20–29. Google Scholar
  • 15. E. K V. Kalko and H-U. Schnitzler . 1989. The echolocation and hunting behavior of Daubenton's bat, Myotis daubentoni. Behavioral Ecology and Sociobiology 24:225–238. Google Scholar
  • 16. D. Krull, W. Metzner, and G. Neuweiler . 1991. Foraging areas and foraging behavior in the notch-eared bat, Myotis emarginatus (Vespertilionidae). Behavioral Ecology and Sociobiology 28:247–253. Google Scholar
  • 17. T. Müller 1999. Characteristic intraepidermal nerve fibre endings of the intervibrissal fur in the mystacial pad of the rat: morphological details revealed by intravital methylene blue staining and the zinc iodide-osmium teroxide technique. Journal of Anatomy 195:147–152. Google Scholar
  • 18. T. Müller 2000. Supravital methylene blue staining of piloneural complexes of common fur hair follicles in the rat. Biotechnic and Histochemistry 75:245–250. Google Scholar
  • 19. B. L. Munger and C. Ide . 1988. The structure and function of cutaneous sensory receptors. Archives of Histology and Cytology 51:1–34. Google Scholar
  • 20. R. M. Nowak 1994. Walker's bats of the World. Johns Hopkins University Press. Baltimore. 287. pp. Google Scholar
  • 21. M. J. O'Farrell and E. H. Studier . 1980. Myotis thysanodes. Mammalian Species 137:1–5. Google Scholar
  • 22. T. J. Park, C. Comer, A. Carol, Y. Lu, H-S. Hong, and F. L. Rice . 2003. Somatosensory organization and behavior in naked mole-rats: II. Peripheral structures, innervation, and selective lack of neuropeptides associated with thermoregulation and pain. Journal of Comparative Neurology 465:104–120. Google Scholar
  • 23. R. L. Reep, C. D. Marshall, and M. L. Stoll . 2002. Tactile hairs on the postcranial body in Florida manatees: A mammalian lateral line. Brain, Behaviour and Evolution 59:141–154. Google Scholar
  • 24. F. L. Rice, A. Mance, and B. L. Munger . 1986. A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of the vibrissal folliclesinus complexes. Journal of Comparative Neurology 252:154–174. Google Scholar
  • 25. F. L. Rice and B. L. Munger . 1986. A comparative light microscopic analysis of the sensory innervation of the mystacial pad. II. The common fur between the vibrissae. Journal of Comparative Neurology 252:186–205. Google Scholar
  • 26. F. L. Rice, E. Kinnman, H. Aldskogius, H. Aldskogius, and J. Arvidsson . 1993. The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluo rescence. Journal of Comparative Neurology 337:366–385. Google Scholar
  • 27. F. L. Rice, B. T. Fundin, J. Arvidsson, H. Aldskogius, and O. Johansson . 1997. Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. Journal of Comparative Neurology 385:149–184. Google Scholar
  • 28. M. Ruedi and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution 21:436–448. Google Scholar
  • 29. S. Schumacher 1932. Muskeln und Nerven der Fledermaus-flughaut. Nach Untersuchungen an Pteropus. Anatomy and Embryology 97:610–621. Google Scholar
  • 30. B. M. Siemers 2001. Finding prey by associative learning in gleaning bats: experiments with a Natterer's bat Myotis nattereri. Acta Chiropterologica 3:211–215. Google Scholar
  • 31. B. M. Siemers and H-U. Schnitzler . 2000. Natterer's bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behavioral Ecology and Sociobiology 47:400–412. Google Scholar
  • 32. B. M. Siemers and H-U. Schnitzler . 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661. Google Scholar
  • 33. B. M. Siemers and S. M. Swift . 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology 59:373–380. Google Scholar
  • 34. B. M. Siemers, I. Kaipf, and H-U. Schnitzler . 1999. The use of day roosts and foraging grounds by Natterer's bats (Myotis nattereri Kuhl, 1818) from a colony in southern Ger many. Zeitschrift für Säugetierkunde 64:241–245. Google Scholar
  • 35. N. B. Simmons 2005. Vespertilionidae. Pp 451–529. in Mammal species of the World: a taxonomic and geographic reference. 3rd edition D. E. Wilson and D. M. Reeder , editors. eds. Johns Hopkins University Press. Baltimore. 2142. pp. Google Scholar
  • 36. P. G. Smith and P. A. Racey . 2008. Natterer's bats prefer foraging in broad-leaved woodlands and river corridors. Journal of Zoology (London) 275:314–322. Google Scholar
  • 37. B. Stadelmann, L. K. Lin, T. H. Kunz, and M. Ruedi . 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution 43:32–48. Google Scholar
  • 38. S. M. Swift 1997. Roosting and foraging behavior of Natterer's bat (Myotis nattereri) close to the northern border of their distribution. Journal of Zoology (London) 242:375–384. Google Scholar
  • 39. S. M. Swift and P. A. Racey . 2002. Gleaning as a foraging strategy in Natterer's bat Myotis nattereri. Behavioral Ecology and Sociobiology 52:408–416. Google Scholar
  • 40. G. Topál 2001. Myotis nattereri — Fransenfledermaus. Pp 405–441. in Handbuch der Säugetiere Europas. Band 4/I: Fledertiere I J. Niethammer and F. Krapp , editors. eds. AULA-Verlag. Wiebelsheim. 1186. pp. Google Scholar
  • 41. S. B. Vincent 1913. The tactile hair of the white rat. Journal of Comparative Neurology 23:1–36. Google Scholar
  • 42. F. A. Webster and D. R. Griffin . 1962. The role of the flight membranes in insect capture by bats. Animal Behaviour 10:332–340. Google Scholar
  • 43. L. E. Wineski 1985. Facial morphology and vibrissal movement in the golden hamster. Journal of Morphology 183:199–217. Google Scholar
  • 44. T. Yohro 1977. Arrangement and structure of sinus hair muscles in the big-clawed shrew. Sorex unguiculatus. Journal of Morphology 153:317–331. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-523e154a-3f3a-4866-9b6f-99db8022ddb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.