PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 67 | 4 |

Tytuł artykułu

Tyrosine kinase, Aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.
PL
Nowotwory stanowią jedną z głównych przyczyn zgonów na świecie. Dostępne w lecznictwie substancje przeciwnowotworowe charakteryzują się niskim indeksem terapeutycznym jak i wysoką toksycznością. Rozwijająca się oporność komórek nowotworowych na dostępne w terapii leki przyczynia się do konieczności poszukiwania nowych punktów uchwytu/miejsc docelowych (z ang. targets) dla potencjalnych substancji przeciwnowotworowych. Obecnie prowadzonych jest również wiele prac nad nowymi związkami przeciwnowotworowymi o wysokim potencjale terapeutycznym, nowym mechanizmie działania i/bądź wyższym indeksie selektywności. W pracy, autorzy skupili uwagę na trzech grupach enzymów, będących obecnie w obszarze zainteresowań współczesnej medycyny. Omówione zostały kinazy tyrozynowe na przykładzie enzymów EGFR i Src, kinazy Aurora typu A, B i C, a także aminopeptydazy na przykładzie aminopeptydazy leucynowej. Scharakteryzowano klasyfikację enzymów, ich rolę w cyklu komórkowym w warunkach fizjologicznych i procesie nowotworowym. Opisano również inhibitory enzymów, substancje będące w trakcie badań in vitro, przedklinicznych i klinicznych jak i leki wprowadzone na rynek farmaceutyczny. Zwrócono uwagę na budowę chemiczną inhibitorów enzymów i tym samym na kierunek poszukiwań nowych leków przeciwnowotworowych. Omówione enzymy w warunkach fizjologicznych odgrywają ważną rolę w cyklu komórkowym, zwłaszcza na etapie podziału mitotycznego. Jednakże w procesie nowotworowym dochodzi do ich nadekspresji. Zjawisko to można zahamować poprzez inhibicję aktywności enzymu. Autorzy omówili wpływ inhibitorów kinaz tyrozynowych, kinaz Aurora czy aminopeptydaz leucynowych na cykl komórkowy i bezpieczeństwo stosowania tych potencjalnych leków u ludzi. Dotychczasowe badania przedkliniczne i kliniczne inhibitorów kinazy tyrozynowej typu EGFR czy Src potwierdziły konieczność selekcji pacjentów, na tych z mutacją w genie kodującym dany enzym. Badania prowadzone na wybranej grupie chorych przynosiły oczekiwany pozytywny wynik. Wiele aspektów dotyczących nowych punktów uchwytu w terapii przeciwnowotworowej wciąż wymaga dalszych prac, aczkolwiek daje również nadzieję na odkrycie skutecznych i selektywnych leków.

Wydawca

-

Rocznik

Tom

67

Numer

4

Opis fizyczny

p.329-341,fig.,ref.

Twórcy

autor
  • Laboratory of Biologically Active Compounds, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Str., 00-791 Warsaw, Poland
autor
  • Laboratory of Biologically Active Compounds, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Str., 00-791 Warsaw, Poland

Bibliografia

  • 1. BRCA1 and BRCA2: Cancer Risk and Genetic Testing; Available from: http://www.cancer.gov/aboutcancer/causes-prevention/genetics/brca-fact-sheet#q1.National Institute of Health (Accessed 09.08.2016).
  • 2. Clinical Trials.gov. Available from: www.clinicaltrials.gov (Accessed 09.08.2016).
  • 3. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Available from: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (Accessed 09.08.2016).
  • 4. InterPro Protein Archive Src, proto-oncogene tyrosineprotein kinase. Available from: https://www.ebi.ac.uk/interpro/potm/2003_2/Page_2.htm. (Accessed 09.08.2016).
  • 5. Uniprot database. Available from: www.uniprot.org. (Accessed 09.08.2016).
  • 6. World Health Organization Media Centre Cancer Fact Sheet No 297. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/ (Accessed 09.08.2016).
  • 7. Agnese V., Bazan V., Fiorentino F.P., Fanale D., Badalamenti G., Colucci G., Adamo V., Santini D., Russo A.: The role of Aurora-A inhibitors in cancer therapy. Ann Oncol 2007;18 Suppl 6:vi47-vi52.
  • 8. Aoyagi T.: Physiological roles of ectoenzymes indicated by the use of aminopeptidase inhibitors. In: Taylor A. ed. Aminopeptidases. Boston: Springer-Verlag Berlin Heidelberg GmbH,1996.
  • 9. Bebbington D., Binch H., Charrier J.D., Everitt S., Fraysse D., Golec J., Kay D., Knegtel R., Mak C., Mazzei F., Miller A., Mortimore M., O’Donnell M., Patel S., Pierard F., Pinder J., Pollard J., Ramaya S., Robinson D., Rutherford A., Studley J., Westcott J.: The discovery of the potent aurora inhibitor MK-0457 (VX-680). Bioorg Med Chem Lett 2009;19:3586-3592.
  • 10. Castro A., Arlot-Bonnemains Y., Vigneron S., Labbe J.C., Prigent C., Lorca T.: APC/Fizzy-Related targets Aurora-A kinase for proteolysis. EMBO Rep 2002;3:457-462.
  • 11. Cavalloni G., Peraldo-Neia C., Sarotto I., Gammaitoni L., Migliardi G., Soster M., Marchiò S., Aglietta M., Leone F.: Antitumor Activity of Src Inhibitor Saracatinib (AZD-0530) in Preclinical Models of Biliary Tract Carcinomas. Mol Cancer Ther 2012;11:1528-1538.
  • 12. Chan W.W., Dennis P., Demmer W., Brand K.: Inhibition of leucine aminopeptidase by amino acid hydroxamates. J Biol Chem 1982;257:7955-7957.
  • 13. Cuenda A., Rousseau S.: p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007;1773:1358-1375.
  • 14. D’Assoro A.B., Haddad T., Galanis E.: Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front Oncol 2015;5:295-302.
  • 15. D’Avino P.P., Capalbo L.: New Auroras on the Roles of the Chromosomal Passenger Complex in Cytokinesis: Implications for Cancer Therapies. Front Oncol 2015;5:221-226.
  • 16. Dees E.C., Infante J.R., Cohen R.B., O’Neil B.H., Jones S., von Mehren M., Danaee H., Lee Y., Ecsedy J., Manfredi M., Galvin K., Stringer B., Liu H., Eton O., Fingert H., Burris H.: Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors. Cancer Chemother Pharmacol 2011;67:945-954.
  • 17. Eom K.Y., Cho B.J., Choi E.J., Kim J.H., Chie E.K., Wu H.G., Kim I.H., Paek S.H., Kim J.S., Kim I.A.: The Effect of Chemoradiotherapy with SRC Tyrosine Kinase Inhibitor, PP2 and Temozolomide on Malignant Glioma Cells In Vitro and In Vivo. Cancer Res Treat 2016;48:687-697.
  • 18. Fellmeth J.E., Gordon D., Robins C.E., Scott R.T., Jr., Treff N.R., Schindler K.: Expression and characterization of three Aurora kinase C splice variants found in human oocytes. Mol Hum Reprod 2015;21:633-644.
  • 19. Formisano L., D’Amato V., Servetto A., Brillante S., Raimondo L., Di M.C., Marciano R., Orsini R.C., Cosconati S., Randazzo A., Parsons S.J., Montuori N., Veneziani B.M., De P.S., Rosa R., Bianco R.: Src inhibitors act through different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational status. Oncotarget 2015;6:26090-26103.
  • 20. Frame M.C.: Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 2002;1602:114-130.
  • 21. Gavriilidis P., Giakoustidis A., Giakoustidis D.: Aurora Kinases and Potential Medical Applications of Aurora Kinase Inhibitors: A Review. J Clin Med Res 2015;7:742-751.
  • 22. Gerber D.E.: Targeted therapies: a new generation of cancer treatments. Am Fam Physician 2008;77:311-319.
  • 23. Girdler F., Gascoigne K.E., Eyers P.A., Hartmuth S., Crafter C., Foote K.M., Keen N.J., Taylor S.S.: Validating Aurora B as an anti-cancer drug target. J Cell Sci 2006;119:3664-3675.
  • 24. Gocek E., Moulas A.N., Studzinski G.P.: Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014;51:125-137.
  • 25. Grembecka J., Kafarski P.: Leucine aminopeptidase as a target for inhibitor design. Mini Rev Med Chem 2001;1:133-144.
  • 26. He X., Huang Q., Qiu X., Liu X., Sun G., Guo J., Ding Z., Yang L., Ban N., Tao T., Wang D.: LAP3 promotes glioma progression by regulating proliferation, migration and invasion of glioma cells. Int J Biol Macromol 2015;72:1081-1089.
  • 27. Hedges J.C., Dechert M.A., Yamboliev I.A., Martin J.L., Hickey E., Weber L.A., Gerthoffer W.T.: A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 1999;274:24211-24219.
  • 28. Herbst R.S.: Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59:21-26.
  • 29. Heusschen R., Muller J., Binsfeld M., Marty C., Plougonven E., Dubois S., Mahli N., Moermans K., Carmeliet G., Leonard A., Baron F., Beguin Y., Menu E., Cohen-Solal M., Caers J.: SRC kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma. Oncotarget 2016;7:30712-30729.
  • 30. Hitzerd S.M., Verbrugge S.E., Ossenkoppele G., Jansen G., Peters G.J.: Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 2014;46:793-808.
  • 31. Hoang N.T., Phuong T.T., Nguyen T.T., Tran Y.T., Nguyen A.T., Nguyen T.L., Bui K.T.: In vitro Characterization of Derrone as an Aurora Kinase Inhibitor. Biol Pharm Bull 2016;39:935-945.
  • 32. Ikenoue T., Hong S., Inoki K.: Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol 2009;452:165-178.
  • 33. Katayama H., Sen S.: Aurora kinase inhibitors as anticancer molecules. Biochim Biophys Acta 2010;1799:829-839.
  • 34. Katsha A., Belkhiri A., Goff L. El-Rifai W.: Aurora kinase A in gastrointestinal cancers: time to target. Mol Cancer 2015;14:106-118.
  • 35. Kollareddy M., Dzubak P., Zheleva D., Hajduch M.: Aurora kinases: structure, functions and their association with cancer. Acta Univ Palacki Olomuc Fac Med 2008;152:27-33.
  • 36. Kollareddy M., Zheleva D., Dzubak P., Brahmkshatriya P.S., Lepsik M., Hajduch M.: Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs 2012;30:2411-2432.
  • 37. Krige D., Needham L.A., Bawden L.J., Flores N., Farmer H., Miles L.E., Stone E., Callaghan J., Chandler S., Clark V.L., Kirwin-Jones P., Legris V., Owen J., Patel T., Wood S., Box G., Laber D., Odedra R., Wright A., Wood L.M., Eccles S.A., Bone E.A., Ayscough A., Drummond A.H.: CHR-2797: an antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells. Cancer Res 2008;68:6669-6679.
  • 38. Lejczak B., Kafarski P., Zygmunt J.: Inhibition of aminopeptidases by aminophosphonates. Biochemistry 1989;28:3549-3555.
  • 39. Lemmon M.A., Schlessinger J.: Cell signaling by receptor tyrosine kinases. Cell 2010; 141:1117-1134.
  • 40. Lemmon M.A., Schlessinger J., Ferguson K.M.: The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2014; 6:a020768.
  • 41. Manfredi M.G., Ecsedy J.A., Meetze K.A., Balani S.K., Burenkova O., Chen W., Galvin K.M., Hoar K.M., Huck J.J., LeRoy P.J., Ray E.T., Sells T.B., Stringer B., Stroud S.G., Vos T.J., Weatherhead G.S., Wysong D.R., Zhang M., Bolen J.B., Claiborne C.F.: Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA. 2007;104:4106-4111.
  • 42. Mawad R., Becker P.S., Hendrie P., Scott B., Wood B.L., Dean C., Sandhu V., Deeg H.J., Walter R., Wang L., Myint H., Singer J.W., Estey E., Pagel J.M.: Phase II study of tosedostat with cytarabine or decitabine in newly diagnosed older patients with acute myeloid leukaemia or high-risk MDS. Br J Haematol 2016;172:238-245.
  • 43. Mucha A., Drag M., Dalton J.P., Kafarski P.: Metalloaminopeptidase inhibitors. Biochimie 2010;92:1509-1529.
  • 44. Nair J.S., Schwartz G.K.: MLN-8237: A dual inhibitor of aurora A and B in soft tissue sarcomas. Oncotarget 2016;7:12893-12903.
  • 45. Padma V.V.: An overview of targeted cancer therapy. Biomedicine (Taipei) 2015; 5:19-24.
  • 46. Parsons S.J., Parsons J.T.: Src family kinases, key regulators of signal transduction. Oncogene 2004;23:7906-7909.
  • 47. Paul M.K., Mukhopadhyay A.K.: Tyrosine kinase - Role and significance in Cancer. Int J Med Sci 2004;1:101-115.
  • 48. Quartuccio S.M., Schindler K.: Functions of Aurora kinase C in meiosis and cancer. Front Cell Dev Biol 2015;3:50-57.
  • 49. Raval S.H., Singh R.D., Joshi D.V., Patel H.B., Mody S.K.: Recent developments in receptor tyrosine kinases targeted anticancer therapy. Vet World 2016;9:80-90.
  • 50. Raymond E., Faivre S., Armand J.P.: Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 2000;60 Suppl 1:15-23.
  • 51. Roengvoraphoj M., Tsongalis G.J., Dragnev K.H., Rigas J.R.: Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell lung cancer: focus on epidermal growth factor receptor mutation testing and mutation-positive patients. Cancer Treat Rev 2013;39:839-850.
  • 52. Roskoski R., Jr.: Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 2004;324:1155-1164.
  • 53. Rossi A., Pasquale R., Esposito C., Normanno N.: Should epidermal growth factor receptor tyrosine kinase inhibitors be considered ideal drugs for the treatment of selected advanced non-small cell lung cancer patients? Cancer Treat Rev 2013;39:489-497.
  • 54. Rossi S., D’Argento E., Schinzari G., Dadduzio V., Di N., V, Cassano A., Barone C.: Are TKIs favourable for the elderly with non-small-cell lung cancer? Oncotarget 2016;7:46871-46877.
  • 55. Sanderink G.J., Artur Y., Siest G.: Human Aminopeptidases: A Review of the literature. J Clin Chem Clin Biochem 1988;26:795-807.
  • 56. Sato Y.: Role of Aminopeptidase in Angiogenesis. Biol Pharm Bull 2004;27:772-776.
  • 57. Schlessinger J.: Cell signaling by receptor tyrosine kinases. Cell 2000;103:211-225.
  • 58. Segaliny A.I., Tellez-Gabriel M., Heymann M.F., Heymann D.: Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015;4:1-12.
  • 59. Shafer D., Grant S.: Update on rational targeted therapy in AML. Blood Rev 2016;30:275-283.
  • 60. Strater N., Lipscomb W.N.: Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry 1995;34:14792-14800.
  • 61. Sun C., Chan F., Briassouli P., Linardopoulos S.: Aurora kinase inhibition downregulates NF-kappaB and sensitises tumour cells to chemotherapeutic agents. Biochem Biophys Res Commun 2007;352:220-225.
  • 62. Taylor A.: Aminopeptidasaes, Occurrence, Regulation and Nomenclature. In: Taylor A. ed. Aminopeptidases. Austin, Texas, USA: R.G. Landes Company,1996.
  • 63. Taylor A., Peltier C.Z., Torre F.J., Hakamian N.: Inhibition of bovine lens leucine aminopeptidase by bestatin: number of binding sites and slow binding of this inhibitor. Biochemistry 1993;32:784-790.
  • 64. Taylor A., Sanford D., Nowell T.: Structure and function of bovine lens aminopeptidase and comparison with homologous aminopeptidases. In: Taylor A. ed. Aminopeptidases. Austin, Texas, USA: R.G. Landes Company,1996.
  • 65. Tian S.Y., Chen S.H., Shao B.F., Cai H.Y., Zhou Y., Zhou Y.L., Xu A.B.: Expression of leucine aminopeptidase 3 (LAP3) correlates with prognosis and malignant development of human hepatocellular carcinoma (HCC). Int J Clin Exp Pathol 2014;7:3752-3762.
  • 66. Vergoulidou M.: More than a Decade of Tyrosine Kinase Inhibitors in the Treatment of Solid Tumors: What We Have Learned and What the Future Holds. Biomark Insights 2015; 10:33-40.
  • 67. Vultur A., Buettner R., Kowolik C., Liang W., Smith D., Boschelli F., Jove R.: SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 2008;7:1185-1194.
  • 68. Wang X, Shi L, Deng Y, Qu M, Mao S, Xu L, Xu W, Fang C.: Inhibition of leucine aminopeptidase 3 suppresses invasion of ovarian cancer cells through downregulation of fascin and MMP-2/9. Eur J Pharmacol 2015;768:116-122.
  • 69. Xie J.J., Xu L.Y., Zhang H.H., Cai W.J., Mai R.Q., Xie Y.M., Yang Z.M., Niu Y.D., Shen Z.Y., Li E.M.: Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells. Biochem Biophys Res Commun 2005;337:355-362.
  • 70. Yang G., Chang B., Yang F., Guo X., Cai K.Q., Xiao X.S., Wang H., Sen S., Hung M.C., Mills G.B., Chang S., Multani A.S., Mercado-Uribe I., Liu J.: Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res 2010;16:3171-3181.
  • 71. Yang H., Lawrence H.R., Kazi A., Gevariya H., Patel R., Luo Y., Rix U., Schonbrunn E., Lawrence N.J., Sebti S.M.: Dual Aurora A and JAK2 kinase blockade effectively suppresses malignant transformation. Oncotarget 2014;5:2947-2961.
  • 72. Yin S., Tang C., Wang B., Zhang Y., Zhou L., Xue L., Zhang C.: Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold. Eur J Med Chem 2016;120:26-36.
  • 73. Zhang S., Yang X., Shi H., Li M., Xue Q., Ren H., Yao L., Chen X., Zhang J., Wang H.: Overexpression of leucine aminopeptidase 3 contributes to malignant development of human esophageal squamous cell carcinoma. J Mol Histol 2014;45:283-292.
  • 74. Zhang S., Yu D.: Targeting Src family kinases in anticancer therapies: turning promise into triumph. Trends Pharmacol Sci 2012;33:122-128.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-52207531-6e73-42cc-91fe-9dc00b04110d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.