PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 68 |

Tytuł artykułu

Forest tree research in post genomic era. Introduction to systems biology of broadleaves

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Trees are long living organisms, rarely used in molecular experiments because of large size of the genome and long time of reproduction cycle. Sequencing data from Populus trichocarpa genome allowed for the development of research on the processes associated with tree biology such as secondary wood formation, long-term perennial growth, seasonal changes, biotic interactions, evolution etc. Reference data enable the investigation of non-model trees such as Quercus or Fagus, having ecological and economic significance. During projects scientists use genomic, transcriptomic, proteomic and metabolomic approaches which contribute to better understanding of the physiological processes regulating tree biology. Data collected from these multiple studies need to be integrated. The integration of data is the subject of the newly established field of science called systems biology. This review presents progress in tree research after finishing the sequencing project of Populus. It concentrates on modern trends in 'omics' and systems biology study of temperate broadleave trees during the last 10 years of studies.

Wydawca

-

Czasopismo

Rocznik

Tom

68

Opis fizyczny

p.113-123,fig.,ref.

Twórcy

autor
  • Institute of Dendrology, Polish Academy of Sciences, Kornik, Poland

Bibliografia

  • Abril N., Gion J.M., Kerner R., Muller-Starck G., Cerrillo R.M.N., Plomion C., Renaut J., Valledor L., Jorrin-Novo J.V. 2011. Proteomics research on forest trees, the most recalcitrant andorphan plant species. Phytochemistry 72: 1219–1242.
  • Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J. 2005. Babelomics: a suite of web tools for functional annotation andanalysis of groups of genes in high-throughput experiments. Nucleic Acids Research 33: 460–464.
  • Al-Shahrour F., Arbiza L., Dopazo H., Huerta-Cepas J., Mínguez P., Montaner D., Dopazo J. 2007. From genes to functional classes in the study of biological systems. BMC Bioinformatics 8: Article Number 114.
  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.
  • Baginsky S. 2009. Plant proteomics: Concepts, applications, andnovel strategies for data interpretation. Mass Spectrometry Review 28: 93–120.
  • Bai X.D., Rivera-Vega L., Mamidala P., Bonello .P, Herms D.A., Mittapalli O. 2011. Transcriptomic signatures of ash (Fraxinus spp.) Phloem. PLoS ONE 6: Article Number e16368.
  • Beritognolo I., Harfouche A., Brilli F., Prosperini G., Gaudet M., Brosché M, Salani F., Kuzminsky E., Auvinen P., Paulin L., Kangasjärvi J., Loreto F., Valentini R., Scarascia-Mugnozza G., Sabatti M. 2011. Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiology 31: 1335–1355.
  • Berta M., Giovannelli A., Sebastiani F., Camussi A., Racchi M.L. 2010. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biology 12: 341–354.
  • Bohler S., Sergeant K., Hoffmann L., Dizengremel P., Hausman J.F., Renaut J., Jolivet Y. 2011. A difference gel electrophoresis study on thylakoids isolatedfrom Poplar leaves reveals a negative impact of ozone exposure on membrane proteins. Journal of Proteome Research 10: 3003–3011.
  • Bradshaw H.D., Ceulemans R., Davis J., Stettler R. 2000. Emerging model systems in plant biology: Poplar (Populus) as a model forest tree. Journal of Plant Growth Regulation 19: 306–313.
  • Brenner S., Johnson M., Bridgham J., Golda G., Loyd D.H., Johanson D., Luo S., McCurdy S., Foy M., Ewan M., Roth R., George D., Eletr S., Albrecht G., Vermaas E., Williams S.R., Moon K., Burcham T., Pallas M., DuBridge R.B., Kirchner J., Fearon K., Mao J., Corcoran K. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbeadarrays. Nature Biotechnology 18: 630–634.
  • Brosché M., Vinocur B., Alatalo E.R., Lamminmäki A., Teichmann T., Ottow E.A., Djilianov D., Afif D., Bogeat-Triboulot M.B., Altman A., Polle A., Dreyer E., Rudd S., Paulin L., Auvinen P., Kangasjärvi J. 2005. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biology 6: Article Number R101.
  • Cańas B., Pińeiro C., Calvo E., López-Ferrer D., Gallardo J.M. 2007. Trends in sample preparation for classical andsecondgeneration proteomics. Journal of Chromatography A 1153: 235–258.
  • Collins L.J., Biggs P.J., Voelckel C., Joly S. 2008. An approach to transcriptome analysis of non-model organisms using short-readsequences. Genome Informatics 21: 3–14.
  • Coll-Lladó M., Acinas S.G., Pujades C., Pedrós-Alió C. 2011. Transcriptome fingerprinting analysis: an approach to explore gene expression patterns in marine microbial communities. PLoS ONE 6: Article Number e22950.
  • Derory J., Léger P., Garcia V., Schaeffer J., Hauser M.T., Salin F., Luschnig C., Plomion C., Glössl J., Kremer A. 2006. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytologist 170: 723–738.
  • Di Baccio D., Galla G., Bracci T., Andreucci A., Barcaccia G., Tognetti R., Sebastiani L. 2011. Transcriptome analyses of Populus × euramericana clone I-214 leaves exposedto excess zinc. Tree Physiology 31: 1293–1308.
  • Dunn W.B., Bailey N.J.C., Johnson H.E. 2005. Measuring the metabolome: current analytical technologies. Analyst 130: 606–625.
  • DurandT.C., Sergeant K., Renaut J., Planchon S., Hoffmann L., Carpin S., Label P., Morabito D., Hausman J.F. 2011. Poplar under drought: comparison of leaf andcambial proteomic responses. Journal of Proteomics 74: 1396–1410.
  • Escalante-Pérez M., Lautner S., Nehls U., Selle A., Teuber M., Schnitzler J.P., Teichmann T., Fayyaz P., Hartung W., Polle A., Fromm J., Hedrich R., Ache P. 2009. Salt stress affects xylem differentiation of grey poplar (Populus x canescens). Planta 229: 299–309.
  • Erler A., Hawranek T., Kruckemeier L., Asam C., Egger M., Ferreira F., Briza P. 2011. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins. Proteomics 11: 1486–1498.
  • Ferry-Dumazet H., Houel G., Montalent P., Moreau L., Langella O., Negroni L., Vincent D., Lalanne C., de Daruvar A., Plomion C., Zivy M., Joets J. 2005. PROTICdb: A web-based application to store, track, query, andcompare plant proteome data. Proteomics 5: 2069–2081.
  • Fukusaki E., Kobayashi A. 2005. Plant metabolomics: potential for practical operation. Journal of Bioscience and Bioengineering 100: 347–354.
  • Gailing O., Vornam B., Leinemann L., Finkeldey R. 2009. Genetic andgenomic approaches to assess adaptive genetic variation in plants: forest trees as a model. Physiologia Plantarum 137: 509–519.
  • Glenn T.C. 2011. Fieldguid e to next-generation DNA sequencers. Molecular Ecology Resources 11: 759–769.
  • Gupta G., Surolia A., Sampathkumar S.G. 2010. Lectin microarrays for glycomic analysis. OMICS: a Journal of Integrative Biology14: 419–436.
  • Hashii N., Kawasaki N., Itoh S., Hyuga M., Kawanishi T., Hayakawa T. 2005. Glycomic/glycoproteomic analysis by liquidchromatography/mass spectrometry: Analysis of glycan structure alternation in cells. Proteomics 5: 4665–4672.
  • Hoffman D.E., Jonsson P., Bylesjö M., Trygg J., Antti H., Eriksson M.E., Moritz T. 2010. Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiodvariation. Plant, Cell andEnvironment 33: 1298–1313.
  • Ivanov A.S., Zgoda V.G., Archakov A.I. 2011. Technologies of protein interactomics: a review. Russian Journal of Bioorganic Chemistry 37: 4–16.
  • Jansson S., Douglas C.J. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58: 435–58.
  • Janz D., Behnke K., Schnitzler J.P., Kanawati B., Schmitt-Kopplin P., Polle A. 2010. Pathway analysis of the transcriptome andmetabolome of salt sensitive andtolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology 10: Article Number 150.
  • Jorrín-Novo J.V., Maldonado A.M., Echevarría-Zomeńo S., Valledor L., Castillejo M.A., Curto M., Valero J., Sghaier B., Donoso G., Redondo I. 2009. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage andexpandbiological knowledge. Journal of Proteomics 72: 285–314.
  • Kerner R., Winkler J.B., Dupuy J.W., Jürgensen M., Lindermayr C., Ernst D., Müller-Starck G. 2011. Changes in the proteome of juvenile European beech following three years exposure to free-air elevatedozone. iForest Biogeoscience and Forestry 4: 69–76.
  • Kersten B., Agrawal G.K., Iwahashi H., Rakwal R. 2006. Plant phosphoproteomics: a long road ahead. Proteomics 6: 5517–5528.
  • Kim H.K., Choi Y.H., Verpoorte R. 2011. NMR-based plant metabolomics: where do we stand, where do we go? Trends in Biotechnology 29: 267–275.
  • Kitano H. 2002. Systems biology: a brief overview. Science 295: 1662–1664.
  • Kohler A., Delaruelle C., Martin D., Encelot N., Martin F. 2003. The poplar root transcriptome: analysis of 7000 expressedsequence tags. FEBS Letters 542: 37–41.
  • Lo S.H. 2007. Reverse Interactomics: From Peptides to Proteins andto Functions. ACS Cell Biology 2: 93–95.
  • McEntyre J., Ostell J. 2002. The NCBI Handbook. Bethesda (MD): National Center for Biotechnology Information (US).
  • Medina I, Carbonell J., Pulido L., Madeira S.C., Goetz S., Conesa A., Tárraga J., Pascual-Montano A., Nogales-Cadenas R., Santoyo J., García F., Marbá M., Montaner D., Dopazo J. 2010. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics andgenomic data with advanced functional profiling. Nucleic Acids Research 38: 210–213.
  • Miernyk J.A., Hajduch M. 2011. Seed proteomics. Journal of Proteomic 74: 389 – 400. National Center for Biotechnology Information Entrez Genome Project, http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html.
  • National Center for Biotechnology Information, ExpressedSequence Tag databases, http://www.ncbi.nlm.nih.gov/dbEST/dbEST.
  • Oeljeklaus S., Meyer H.E, WarscheidB. 2009. Advancements in plant proteomics using quantitative mass spektrometry. Journal of Proteomics 72: 545–554.
  • Ohlrogge J., Benning C. 2000. Unraveling plant metabolism by EST analysis. Current Opinion in Plant Biology 3: 224–228.
  • Palumbo A.M., Smith S.A., Kalcic C.L., Dantus M., Stemmer P.M., ReidG.E. 2011. Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrometry Reviews 30: 600–625.
  • Pawłowski T., Kalinowski A. 2003. Qualitative and quantitative changes in proteins in Acer platanoides L. seeds during maturation. Acta Biologica Cracoviensia Series Botanica 72: 289–293.
  • Pawłowski T.A. 2007. Proteomics of European beech (Fagus sylvatica L.) seedd ormancy breaking: Influence of abscisic andgibberellic acids. Proteomics 7: 2246–2257.
  • Pawłowski T.A. 2009. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biology 9: Article Number 48.
  • Pawłowski T.A. 2010. Proteomic approach to analyze dormancy breaking of tree seeds. Plant Molecular Biology 73: 15–25.
  • Peck S.C. 2006. Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. Journal of Experimental Botany 57: 1523–1527.
  • Peńa L., Séguin A. 2001. Recent advances in the genetic transformation of trees. Trends in Biotechnology 19: 500–506.
  • Plomion C., Lalanne C., Claverol S., Meddour H., Kohler A., Bogeat-Triboulot M.B., Barre A, Le Provost G., Dumazet H., Jacob D., Bastien C., Dreyer E., de Daruvar A., Guehl J.M., Schmitter J.M., Martin F., Bonneu M. 2006. Mapping the proteome of poplar andapplication to the discovery of drought-stress responsive proteins. Proteomics 6: 6509–6527.
  • Remmerie N., Vijlder T., Laukens K., Dang T.H., Lemière F., Mertens I., Valkenborg D., Blust R., Witters E. 2011. Next generation functional proteomics in non-model plants: a survey on techniques andapplications for the analysis of protein complexes andpost-translational modifications. Phytochemistry 72: 1192–1218.
  • Rigault P., Boyle B., Lepage P., Cooke J.E.K., Bousquet J., MacKay J.J. 2011. A white spruce gene catalog for conifer genome. Plant Physiology 157: 14–28.
  • Robinson A.R., Gheneim R., Kozak R.A., Ellis D.D., MansfieldS.D. 2005. The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. Journal of Experimental Botany 56: 2807–2819.
  • Robinson A.R., MansfieldS.D. 2009. Rapidanalysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infraredreflectance-basedpred iction modeling. The Plant Journal 58: 706–714.
  • Qiu Q., Ma T., Hu Q., Liu B., Wu Y., Zhou H., Wang Q., Wang J., Liu J. Sederoff R. 2011. Genome- scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiology 31: 452–461.
  • Schenk M.F., Cordewenera J.H.G., America A.H.P., Peters J., Smulders M.J.M., Gilissen L.J.W.J. 2011. Proteomic analysis of the major birch allergen Bet v 1 predicts allergenicity for 15 birch species. Journal of Proteomics 74: 1290–1300.
  • Sergeant K., Spiess N., Renaut J., Wilhelm E., Hausman J. F. 2011. One dry summer: a leaf proteome study on the response of oak to drought exposure. Journal of Proteomics 74: 1385–1395.
  • Sjödin A., Bylesjö M., Skogström O., Eriksson D., Nilsson P., Rydén P., Jansson S. Karlsson J. 2006. UPSC-BASE – Populus transcriptomics online. Plant Journal 48: 806–817.
  • Sjödin A. 2007. Populus transcriptomics – from noise to biology. PhD thesis. Plant Science Centre Department of Plant Physiology Umeå University, Umeå, Sweden.
  • Song D., Shen J., Li L. 2010. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytologist 187: 777–790.
  • Stapley J., Reger J., Feulner P.G., Smadja C., Galindo J., Ekblom R., Bennison C., Ball A.D., Beckerman A.P., Slate J. 2010. Adaptation genomics: the next generation. Trends in Ecology and Evolution 25: 705–712.
  • Sterky F., Regan S., Karlsson J., Hertzberg M., Rohde A., Holmberg A., Amini B., Bhalerao R., Larsson M., Villarroel R., Montagu M.V., Sandberg G.R., Olssoni O., Teeri T.T., Boerjan W., Gustafsson P., Uhlén. M., Sundberg B., Lundeberg J. 1998. Gene discovery in the wood-forming tissues of poplar: Analysis of 5,692 expressedsequence tags. Proceedings of the National Academy of Sciences of the United States of America 95: 13330–13335.
  • Sterky F., Bhalerao R.R., Unneberg P., Segerman B., Nilsson P., Brunner A.M., Charbonnel-Campaa L., Lindvall J.J., Tandre K., Strauss S.H., Sundberg B., Gustafsson P., Uhlén M., Bhalerao R.P., Nilsson O., Sandberg G., Karlsson J., Lundeberg J., Jansson S. 2004. A Populus EST resource for plant functional genomics. Proceedings of the National Academy of Sciences of the United States of America 101: 13951–13956.
  • Street N.R., James T.M., James T., Mikael B., Jaakko K., Mark B., Taylor G. 2011. The physiological, transcriptional andgenetic responses of an ozone- sensitive andan ozone tolerant poplar and selectedextremes of their F2 progeny. Environmental Pollution 159: 45–54.
  • Surget-Groba Y., Montoya-Burgos J.I. 2010. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Research 20: 1432–1440.
  • Szczotka Z., Pawłowski T., Krawiarz K. 2003. Proteins and polyamines relation during dormancy breaking of European beech (Fagus sylvatica L.) seeds. Acta Physiologiae Plantarum 25: 423–435.
  • Taylor G. 2002. Populus: Arabidopsis for forestry. Do we needa model tree? Annals of Botany 90: 681–689.
  • Tonge R., Shaw J., Middleton B., Rowlinson R., Rayner S., Young J., Pognan F., Hawkins E., Currie I., Davison M. 2001. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1: 377–396.
  • Tuskan G.A., DiFazio S.P., Teichmann T. 2003. Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biology 6: 2–4.
  • Tuskan G.A., DiFazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., Putnam N., Ralph S., Rombauts S., Salamov A., Schein J., Sterck L., Aerts A., Bhalerao R.R., Bhalerao R.P., Blaudez D., Boerjan W., Brun A., Brunner A., Busov V., Campbell M., Carlson J., Chalot M., Chapman J., Chen G.L., Cooper D., Coutinho P.M., Couturier J., Covert S., Cronk Q., Cunningham R., Davis J., Degroeve S., Déjardin A., dePamphilis C., Detter J., Dirks B., Dubchak I., Duplessis S., Ehlting J., Ellis B., Gendler K., Goodstein D., Gribskov M., GrimwoodJ., Groover A., Gunter L., Hamberger B., Heinze B., Helariutta Y., Henrissat B., Holligan D., Holt R., Huang W., Islam-Faridi N., Jones S., Jones-Rhoades M., Jorgensen R., Joshi C., Kangasjarvi J., Karlsson J., Kelleher C., Kirkpatrick R., Kirst M., Kohler A., Kalluri U., Larimer F., Leebens-Mack J., Leplé J.C., Locascio P., Lou Y., Lucas S., Martin F., Montanini B., Napoli C., Nelson D.R., Nelson C., Nieminen K., Nilsson O., Pereda V., Peter G., Philippe R., Pilate G., Poliakov A., Razumovskaya J., Richardson P., Rinaldi C., Ritland K., Rouzé P., Ryaboy D., Schmutz J., Schrader J., Segerman B., Shin H., Siddiqui A., Sterky F., Terry A., Tsai C.J., Uberbacher E., Unneberg P., Vahala J., Wall K., Wessler S., Yang G., Yin T., Douglas C., Marra M., Sandberg G., Van de Peer Y., Rokhsar D. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604.
  • Ueno S., Provost G., Léger V., Klopp C., Noirot C., Frigerio J.M., Salin F., Salse J., Abrouk M., Murat F., Brendel O., Derory J., Abadie P., Léger P., Cabane C., Barré A., de Daruvar A., Couloux A., Wincker P., Reviron M.P., Kremer A., Plomion C. 2010. Bioinformatic analysis of ESTs collectedby Sanger andpyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 11: Article Number 650.
  • Valero Galván J., Valledor L., Navarro Cerrillo R.M., Gil Pelegrín E., Jorrín-Novo J.V. 2011. Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. Journal of Proteomics 74: 1244–1255.
  • Vera J.C., Wheat C.W., Fescemyer H.W., Frilander M.J., CrawfordD.L., Hanski I., Marden J.H. 2008. Rapidtranscriptome characterization for a non model organism using 454 pyrosequencing. Molecular Ecology 17: 1636–1647.
  • WardJ.L., Baker J.M., Beale M.H. 2007. Recent applications of NMR spectroscopy in plant metabolomics. The FEBS Journal 274: 1126–1131.
  • WardJ.L., Baker J.M., Miller S.J., Deborde C., Maucourt M., Biais B., Rolin D., Moing A., Moco S., Vervoort J., Lommen A., Schäfer H., Humpfer E., Beale M.H. 2010. An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics 6: 263–273.
  • Wienkoop S., Morgenthal K., Wolschin F., Scholz M., Selbig J., Weckwerth W. 2008. Integration of metabolomic andproteomic phenotypes. Analysis of data covariance dissects starch and RFO metabolism from low andhigh temperature compensation response in Arabidopsis thaliana. Molecular and Cellular Proteomics 7: 1725–1736.
  • Wishart D.S. 2011. Advances in metabolite identification. Bioanalysis 3: 1769-1782.
  • Zhang J., Gao G., Chen J.J., Taylor G., Cui K.M., He X.Q. 2011. Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. New Phytologist 192: 869–884.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-51f5c9c9-fdbc-43dd-bb7c-58a586ba75c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.