PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 02 |

Tytuł artykułu

Photoheterotrophic growth unprecedentedly increases the biosynthesis of mycosporine-like amino acid shinorine in the cyanobacterium Anabaena sp., isolated from hot springs of Rajgir (India)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cyanobacteria are known to biosynthesize mycosporine-like amino acids (MAAs) as photoprotective compounds against ultraviolet radiation. Anabaena sp., isolated from the hot springs of Rajgir, India, produces a single MAA shinorine (retention time = 2.2 min and absorption maximum at 334 nm) as purified by high-performance liquid chromatography. The MAA biosynthesis was under constitutive control in this cyanobacterium; however, PAR + UV-A + UV-B radiation was found to have highest impact on MAA synthesis. MAA biosynthesis is dependent on photosynthesis for the carbon source since the inhibitory effect of DCMU on MAA synthesis was overcome by externally added fructose. Our results suggest that there is no direct involvement of photosystem II dependent linear electron transport in MAA biosynthesis. However, utilization of energy derived from photosystem I dependent cyclic electron transport in MAA biosynthesis cannot be ruled out. This study also reveals that photoheterotrophic growth can support highest MAA biosynthesis under laboratory conditions in comparison with photoautotrophic and photomixotrophic growth. Thus, photoheterotrophic growth condition can be used for the large-scale production of pharmaceutically important MAAs from cyanobacteria for an industrial application.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

02

Opis fizyczny

p.389-397,fig.,ref.

Twórcy

autor
  • Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
  • Plant Biology Laboratories, Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
autor
  • Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
  • Department of Polar Climate, Korea Polar Research Institute, Get-pearl Tower, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
autor
  • Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
autor
  • Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
  • Neue Str. 9, 91096 Mohrendorf, Germany

Bibliografia

  • Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656
  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551
  • Campbell D, Eriksson MJ, Öquist G, Gustafsson P, Clarke AK (1998) The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Natl Acad Sci USA 95:364–369
  • Chojnacka K, Marquez-Rocha F-J (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3(1):21–34
  • Crutzen PJ (1992) Ultraviolet on the increase. Nature 356:104–105
  • Desikachary TV (1959) Cyanophyta. Indian Council of Agriculture Research, New Delhi, pp 414–415
  • Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 112:105–114
  • Feng X, Bandyopadhyay A, Berla B, Page L, Wu B, Pakrasi HB, Tang YJ (2010) Mixotrophic and photoheterotrophic metabolism in Cyanothece sp. ATCC 51142 under continuous light. Microbiology 156:2566–2574
  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240
  • Fischer WF (2008) Life before the rise of oxygen. Nature 455:1051–1052
  • Gröniger A, Häder D-P (2000) Stability of mycosporine-like amino acids. Recent Res Dev Photochem Photobiol 4:247–252
  • Han T, Kong J-A, Han Y-S, Kang S-H, Häder D-P (2004) UV-A/blue light-induced reactivation of spore germination in UV-B irradiated Ulva pertusa (Chlorophyta). J Phycol 40:315–322
  • Jha M (1992) Hydrobiological studies on Suraj Kund and Chandrama Kund, hot springs of Rajgir, Bihar, India. Int Revue ges Hydrobiol 77:435–443
  • Karentz D, Cleaver JE, Mitchell DL (1991) DNA damage in the Antarctic. Nature 350:28
  • Lubin D, Jensen EH (1995) Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377:710–713
  • Middleton EM, Teramura AH (1993) The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol 103:741–752
  • Misonou T, Saitoh J, Oshiba S, Tokitomo Y, Maegawa M, Inoue Y, Hori H, Sakurai T (2003) UV-absorbing substance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block thymine photodimer production. Mar Biotechnol 5:194–200
  • Mittler R, Tel-Or E (1991) Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Rad Res Commun 12:845–850
  • Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231–240
  • Oyamada C, Kaneniwa M, Ebitani K, Murata M, Ishihara K (2008) Mycosporine-like amino acids extracted from scallop (Patinopecten yessoensis) ovaries: UV protection and growth stimulation activities on human cells. Mar Biotechnol 10:141–150
  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156
  • Portwich A, Garcia-Pichel F (2000) A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem Photobiol 71:493–498
  • Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010a) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607
  • Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP (2010b) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010 (Article ID 592980). http://dx.doi.org/10.4061/2010/592980
  • Safferman RS, Morris M-E (1964) Growth characteristics of the blue-green algal virus LPP-1. J Bacteriol 88:771–775
  • Sass L, Spetea C, Mate Z, Nagy F, Vass I (1997) Repair of UV-B induced damage of photosystem II via de novo synthesis of the D1 and D2 reaction centre subunits in Synechocystis sp. PCC 6803. Photosynth Res 54:55–62
  • Singh SP, Klisch M, Sinha RP, Häder D-P (2008) Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem Photobiol 84:1500–1505
  • Singh SP, Häder D-P, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 9:79–90
  • Singh SP, Häder D-P, Sinha RP (2012) Bioinformatics evidence for the transfer of mycosporine-like amino acid core (4-deoxygadusol) synthesizing gene from cyanobacteria to dinoflagellates and an attempt to mutate the same gene (YP_324358) in Anabaena variabilis PCC 7937. Gene 500:155–163
  • Sinha RP, Singh N, Kumar A, Kumar HD, Hader DP (1997) Impacts of ultraviolet-B irradiation on nitrogen-fixing cyanobacteria of rice paddy fields. J Plant Physiol 150:188–193
  • Sinha RP, Klisch M, Häder D-P (1999) Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV irradiation. J Photochem Photobiol B Biol 52:59–64
  • Sinha RP, Sinha JP, Gröniger A, Häder D-P (2002) Polychromatic action spectrum for the induction of a mycosporine-like amino acid in a rice-field cyanobacterium, Anabaena sp. J Photochem Photobiol B Biol 66:47–53
  • Sinha RP, Ambasht NK, Sinha JP, Häder D-P (2003) Wavelength-dependent induction of a mycosporine-like amino acid in a ricefield cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochem Photobiol Sci 2:171–176
  • Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B Biol 89:29–35
  • Spence E, Dunlap WC, Shick JM, Long PF (2012) Redundant pathways of sunscreen biosynthesis in a cyanobacterium. ChemBioChem 13:531–533
  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274
  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochimica Et Biophysica Acta Bioenergetics 1817:209–217
  • Whitehead K, Hedges JI (2005) Photodegradation and photosensitization of mycosporine-like amino acids. J Photochem Photobiol B Biol 80:115–121
  • Yang C, Huaw Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from ¹³C-labeled glucose. Metab Eng 4:202–216

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-51db5a8a-f1f5-471d-bb61-c4e0531ba087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.