PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 19 | 4 |

Tytuł artykułu

Immunoreactivity of arcuate nucleus astrocytes in rats after intragastric administration of habanero peppers (Capsicum Chinese Jacq.)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Habanero pepper fruits contain capsaicin (CAP) characterised by a spicy taste. Astrocytes express vanilloid receptor (TRPV1), which interacts with cannabinoids including CAP. Only a few studies revealed that CAP leads to alterations of the arcuate nucleus (ARC) structures. The aim of this study was to analyse the GFAP (GFAP-IR) and S100β (S100β-IR) immunoreactive astrocytes of ARC in adult rats after intragastric administration of habanero pepper fruits. Adult, Wistar rats received a peanut oil – control group (C) – and oil suspension of habanero pepper fruits at a dose of 0.08 g dm/kg b.w. for 7 days – E1 group – and 28 days – E2 group. After euthanasia, the brains were embedded in paraffin blocks using a routine histological technique. Frontal slices of ARC were immunohistochemically stained for GFAP and S100β using specific antibodies in the peroxidase-antiperoxidase method. Astrocytes of ARC were morphologically and morphometrically analysed under a light microscope. The results of the study did not reveal statistically significant changes in the density of GFAP-IR cells in E1 and E2 groups of rats in comparison with group C. A statistically significant increase in the density of S100β-IR astrocytes was observed in the E1 group and a decrease in the E2 group. Astrocytes with expression of both studied proteins were characterised by morphological alterations in ARC in the E2 group. The obtained results suggest an influence of CAP contained in habanero pepper fruits on the reactivity of astroglia, which may have an impact on the astrocyte-neuron interactions in order to maintain a proper activity of nervous cells in ARC.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.809-817,fig.,ref.

Twórcy

autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
autor
  • Subdepartment of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612 Lublin, Poland
autor
  • Subdepartment of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612 Lublin, Poland
autor
  • Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612 Lublin, Poland

Bibliografia

  • Bélanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11: 281-295.
  • Belousov AB, van den Pol AN (1997) Local synaptic release of glutamate from neurons in the rat hypothalamic arcuate nucleus. J Physiol 499: 747-761.
  • Doly S, Fischer J, Salio C, Conrath M (2004) The vanilloid receptor-1 is expressed in rat spinal dorsal horn astrocytes. Neurosci Lett 357: 123-126.
  • Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60: 540-551.
  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidicprotein: GFAP-thirty-one years (1969-2000). Neurochem Res 25: 1439-1451.
  • Güler AD, Rainwater A, Parker JG, Jones GL, Argilli E, Arenkiel BR, Ehlers MD, Bonci A, Zweifel LS, Palmiter RD (2012) Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat Commun 3: 746.
  • Ho KW, Ward NJ, Calkins DJ (2012) TRPV1: a stress response protein in the central nervous system. Am J Neurodegener Dis 1: 1-14.
  • Kopczyńska B (2011) Cannabinoids’ influence on cardio-respiratory response in an animal model. Med Weter 67: 613-617.
  • Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79: 617-625.
  • Monsereenusorn Y (1983) Subchronic toxicity studies of capsaicin and capsium in rats. Res Commun Chem Pathol Pharmacol 41: 95-110.
  • Montgomery DL (1994) Astrocytes: form, functions, and roles in disease. Vet Pathol 31: 145-167.
  • Nam JH, Park ES, Won SY, Lee YA, Kim KI, Jeong JY, Baek JY, Cho EJ, Jin M, Chung YC, Lee BD, Kim SH, Kim EG, Byun K, Lee B, Woo DH, Lee CJ, Kim SR, Bok E, Kim YS, Ahn TB, Ko HW, Brahmachari S, Pletinkova O, Troconso JC, Dawson VL, Dawson TM, Jin BK (2015) TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s desease via CNTF. Brain 138: 3610-3622.
  • Okere CO, Waterhouse BD (2004) Capsaicin increases GFAP and glutamine synthetase immunoreactivity in rat arcuate nucleus and median eminence. Neuroreport 15: 255-258.
  • Olszewska J (2010) Capsaicin – cure or poison? Kosmos 59: 133-139.
  • O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64: 939-971.
  • O’Neil RG, Brown RC (2003) The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli. News Physiol Sci 18: 226-231.
  • Park ES, Jo S, Yi SJ, Kim JS, Ee HS, Lee IS, Seo KM, Sung JK, Lee I, Yoon YS (2004) Effect of capsaicin on cholecystokinin and neuropeptide Y expressions in the brain of high-fat diet fed rats. J Vet Med Sci 66: 107-114.
  • Pieńko T (2013) Capsaicin – properties, applications today and future prospects. Biul Wydz Farm WUM 2: 11-17.
  • Sakatani S, Seto-Ohshima A, Shinohara Y, Yamamoto Y, Yamamoto H, Itohara S, Hirase H (2008) Neural-activity-dependent release of S100β from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci 28: 10928-10936.
  • Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G, Kennedy WR (1998) Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 18: 8947-8959.
  • Sugimoto T, Xiao C, Ichikawa H (1998) Neonatal primary neuronal death induced by capsaicin and axotomy invovles an apoptotic mechanism. Brain Res 807: 147-154.
  • Surh YJ, Lee SS (1995) Capsaicin, a double edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci 56: 1845-1855.
  • Tardy M, Le Prince G, Babajko S, Riol H, Fages C, Rolland B (1993) GFAP gene expression in normal and reactive astrocytes. In: Fedoroff S, Juurlink BHJ, Doucette R (eds) Biology and pathology of astrocyte-neuron interactions. Plenum Press, New York, pp 153-161.
  • Tóth A, Boczhn J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135: 162-168.
  • Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021: 20-31.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-51a97d6b-3b87-499c-87cb-618e231a1a5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.