PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 2 |

Tytuł artykułu

Mixed leaf litter decomposition and N, P release with a focus on Phyllostachys edulis (Carriere) J. Houz. forest in subtropical southeastern China

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As an important non-wood forest product and wood substitute, Moso bamboo grows extremely rapidly and hence acquires large quantities of nutrients from the soil. With regard to litter decomposition, N and P release in Moso bamboo forests is undoubtedly important; however, to date, no comprehensive analysis has been conducted. Here, we chose two dominant species (i.e., Cunninghamia lanceolata and Phoebe bournei), in addition to Moso bamboo, which are widely distributed in subtropical southeastern China, and created five leaf litter mixtures (PE100, PE80PB20, PE80CL20, PE50PB50 and PE50CL50) to investigate species effects on leaf litter decomposition and nutrient release (N and P) via the litterbag method. Over a one-year incubation experiment, mass loss varied significantly with litter type (P < 0.05). The litter mixtures containing the higher proportions (>80%) of Moso bamboo decomposed faster; the remaining litter compositions followed Olson's decay mode well (R2 > 0.94, P < 0.001). N and P had different patterns of release; overall, N showed great temporal variation, while P was released from the litter continually. The mixture of Moso bamboo and Phoebe bournei (PE80PB20 and PE50PB50) showed significantly faster P release compared to the other three types, but there was no significant difference in N release. Litter decomposition and P release were related to initial litter C/N ratio, C/P ratio, and/or C content, while no significant relationship between N release and initial stoichiometric ratios was found. The Moso bamboo-Phoebe bournei (i.e., bamboo-broadleaved) mixture appeared to be the best choice for nutrient return and thus productivity and maintenance of Moso bamboo in this region.

Wydawca

-

Rocznik

Tom

84

Numer

2

Opis fizyczny

p.207-214,fig.,ref.

Twórcy

autor
  • International Center for Bamboo and Rattan, No.8, Futong East Street, Chaoyang District, 100102 Beijing, China
autor
  • International Center for Bamboo and Rattan, No.8, Futong East Street, Chaoyang District, 100102 Beijing, China
autor
  • International Center for Bamboo and Rattan, No.8, Futong East Street, Chaoyang District, 100102 Beijing, China
autor
  • International Center for Bamboo and Rattan, No.8, Futong East Street, Chaoyang District, 100102 Beijing, China
autor
  • International Center for Bamboo and Rattan, No.8, Futong East Street, Chaoyang District, 100102 Beijing, China

Bibliografia

  • 1.McLaren JR, Turkington R. Plant identity influences decomposition through more than one mechanism. PLoS ONE. 2011;6(8):e23702. http://dx.doi.org/10.1371/journal.pone.0023702
  • 2.Purahong W, Kapturska D, Pecyna MJ, Schulz E, Schloter M, Buscot F, et al. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European forests. PLoS One. 2014;9(4):e93700. http://dx.doi.org/10.1371/journal. pone.0093700
  • 3.Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science. 2004;305(5683):509-513. http://dx.doi.org/10.1126/science.1098778
  • 4.Zhou G, Guan L, Wei X, Tang X, Liu S, Liu J, et al. Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant Soil. 2008;311(1-2):61-72. http://dx.doi.org/10.1007/ s11104-008-9658-5
  • 5.Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 1997;739:439-449. http://dx.doi.org/10.2307/3546886
  • 6.Heneghan L, Coleman DC, Zou X, Crossley DA, Haines BL. Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Appl Soil Ecol. 1998;9(1-3):33-38. http://dx.doi.org/10.1016/S0929-1393(98)00050-X
  • 7.Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science. 2007;315(5810):361-364. http:// dx.doi.org/10.1126/science.1134853
  • 8.Osono T, Azuma J, Hirose D. Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils. Plant Soil. 2014;376(1–2):411–421. http://dx.doi.org/10.1007/s11104-013-1993-5
  • 9. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, et al. Plant species traits are the predominantcontrol on litter decomposition rates within biomesworldwide. Ecol Lett. 2008;11(10):1065–1071. http://dx.doi.org/10.1111/j.1461-0248.2008.01219.x
  • 10. Zhang D, Hui D, Luo Y, Zhou G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J PlantEcol. 2008;1(2):85–93. http://dx.doi.org/10.1093/jpe/rtn002
  • 11. Swan CM, Gluth MA, Horne CL. Leaf litter species evenness influences nonadditive breakdown in a headwater stream. Ecology.2009;90(6):1650–1658. http://dx.doi.org/10.1890/08-0329.1
  • 12. Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA.1997;94(25):13730–13734. http://dx.doi.org/10.1073/pnas.94.25.13730
  • 13. Muller RN. Nutrient relations of the herbaceous layer in deciduous forest ecosystems. In: Gilliam FS, Roberts MR, editors. The herbaceouslayer in forests of eastern North America. New York, NY: OxfordUniversity Press; 2003. p. 15–37.
  • 14. Melillo JM, Aber JD, Muratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. 1982;63(3):621–626. http://dx.doi.org/10.2307/1936780
  • 15. Hobbie SE. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems. 2005;8(6):644–656. http://dx.doi.org/10.1007/s10021-003-0110-7
  • 16. Zhao L, Hu Y, Lin G, Gao Y, Fang Y, Zeng D. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter intwo plantations in Northeast China. PLoS ONE. 2013;8(10):e76334.http://dx.doi.org/10.1371/journal.pone.0076334
  • 17. Gartner TB, Cardon ZG. Decomposition dynamics in mixedspecies leaf litter. Oikos. 2004;104(2):230–246. http://dx.doi.org/10.1111/j.0030-1299.2004.12738.x
  • 18. Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessmentof potential, problems, and future challenges. Environ Rev.2011;19:418–428. http://dx.doi.org/10.1139/a11-015
  • 19. Fu M, Fang M, Xie J, Chen Y, Wang H. Nutrient cycling in bamboo stands 1. leaf litter and its decomposition in pure Phyllostachys pubescens stands. For Res. 1989;2(3):207–213.
  • 20. Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington, DC:Natural Resources Conservation Service, U.S. Department of Agriculture(USDA); 1999.
  • 21. Jones JB. Laboratory guide for conducting soil tests and plant analysis. Boca Raton, FL: CRC Press; 2001.
  • 22. Bocock KL, Gilbert OJW. The disappearance of leaf litter under different woodland conditions. Plant Soil. 1957;9(2):179–185. http://dx.doi.org/10.1139/a11-015
  • 23. Nelson DW, Sommers LE. Total carbon, organic carbon,and organic matter. In: Page AL, editor. Methods of soil analysis. Part 2. Chemicaland microbiological properties. Madison, WI: American Society ofAgronomy, Soil Science Society of America; 1982. p. 539–579.
  • 24. Bremner JM. Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methodsof soil analysis. Part 3. Chemical methods. Madison, WI: AmericanSociety of Agronomy, Soil Science Society of America; 1996. p.1085–1122.
  • 25. Watanabe FS, Olsen SR. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil.Soil Sci Soc Am J. 1965;291(6):677–678. http://dx.doi.org/10.2136/sssaj1965.03615995002900060025x
  • 26. Hanlon EA. Elemental determination by atomic absorption spectrophotometry. In: Kalra YP, editor. Handbook of reference methods for plant analysis. Boca Raton, FL: CRC Press; 1998. p. 157–164.
  • 27.Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 1963;44(2):322-331. http://dx.doi. org/10.2307/1932179
  • 28.SPSS Incorporation. SPSS 13.0 for the Windows. Chicago, IL.: SPSS Incorporation; 2004.
  • 29.Sariyildiz T, Anderson JM. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For Ecol Manage. 2005;210(1-3):303-319.
  • 30.Sariyildiz T, Anderson JM. Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biol Biochem. 2003;35(3):391-399. http://dx.doi.org/10.1016/S0038-0717(02)00290-0
  • 31.Hilli S, Stark S, Derome J. Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Appl Soil Ecol. 2010;46(2):200-208. http://dx.doi. org/10.1016/j.apsoil.2010.08.012
  • 32.Aponte C, Garcia LV, Maranon T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems. 2012;15(7):1204-1218. http://dx.doi.org/10.1007/ s10021-012-9577-4
  • 33.Guendehou GHS, Liski J, Tuomi M, Moudachirou M, Sinsin B, Makipaa R. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Trop Ecol. 2014;55(2):207-220.
  • 34.Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, et al. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett. 2005;8(8):811-818. http://dx.doi.org/10.1111/j.1461-0248.2005.00779.x
  • 35.Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology. 2006;87(9):2288-2297. http://dx.doi. org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
  • 36.Semwal RL, Maikhuri RK, Rao KS, Sen KK, Saxena KG. Leaf litter decomposition and nutrient release patterns of six multipurpose tree species of central Himalaya, India. Biomass Bioenergy. 2003;24(1):3-11. http://dx.doi.org/10.1016/S0961-9534(02)00087-9
  • 37.Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems. 2006;9(1):46-62. http://dx.doi. org/10.1007/s10021-004-0026-x
  • 38.Blair JM, Crossley DA. Litter decomposition, nitrogen dynamics and litter microarthropods in a Southern Appalachian hardwood forest 8 years following clearcutting. J Appl Ecol. 1988;25(2):683-698. http:// dx.doi.org/10.2307/2403854
  • 39.Fang Y, Yoh M, Koba K, Zhu W, Takebayashi Y, Xiao Y, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob Chang Biol. 2011;17(2):872-885. http:// dx.doi.org/10.1111/j.1365-2486.2010.02283.x
  • 40.Fang Y, Gundersen P, Vogt RD, Koba K, Chen F, Chen XY, et al. Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J For Res. 2011;16(5):341-350. http://dx.doi.org/10.1007/ s10310-011-0267-4
  • 41.Lü C, Tian H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J Geophys Res. 2007;112(D22). http://dx.doi.org/10.1029/2006jd007990
  • 42.Manzoni S, Jackson RB, Trofymow JA, Porporato A. The global stoichi-ometry of litter nitrogen mineralization. Science. 2008;321(5889):684-686. http://dx.doi.org/10.1126/science.1159792
  • 43.Blair JM. Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the Southern Appalachians. Soil Biol Biochem. 1988;20(5):693-701. http://dx.doi.org/10.1016/0038-0717(88)90154-X
  • 44.Manzoni S, Trofymow JA, Jackson RB, Porporato A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr. 2010;80(1):89-106. http://dx.doi. org/10.1890/09-0179.1
  • 45.Cortina J, Romanya J, Vallejo VR. Nitrogen and phosphorus leaching from the forest floor of a mature Pinus radiata stand. Geoderma. 1995;66(3-4):321-330. http://dx.doi. org/10.1016/0016-7061(95)00006-A
  • 46.Duffy PD, Schreiber JD, McDowell LL. Leaching of nitrogen, phosphorus, and total organic-carbon from loblolly pine litter by simulated rainfall. For Sci. 1985;31(3):750-759.
  • 47.Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology. 2012;93(4):770-782. http:// dx.doi.org/10.1890/11-0721.1
  • 48.Perry DA, Choquette C, Schroeder P. Nitrogen dynamics in conifer-dominated forests with and without hardwoods. Can J For Res. 1987;17(11):1434-1441. http://dx.doi.org/10.1139/x87-221
  • 49.Waring RH, Schlesinger WH. Forest ecosystems: concepts and management, New York, NY: Academic Press; 1985.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-518174b4-4982-44d6-95e5-0b94194e4e02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.