PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 5 |

Tytuł artykułu

Adsorption of ceftazidime from aqueous solution by multi-walled carbon nanotubes

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Antibiotic contamination of water has become a problem that cannot be ignored. However, existing water treatment technologies at home and abroad couldn’t remove the antibiotics efficiently in the water environment. Our study investigated the adsorption of ceftazidime in aqueous solutions by multiwall carbon nanotubes (MWCNTs), and examined the impact of such factors as pH value, ion strength, and concentration of organic matter on the adsorption process. The results showed that, when the dosage of MWCNTs was 1.6 g/L and the initial concentration of ceftazidime was 30 mg/L, the removal rate of the ceftazidime came up to 80-90%. The pH value of solution, the ion strength, and organic concentrations showed minimal or negligible impacts. The Freundlich isotherm fit the adsorption well. Kinetic analysis was conducted using models. The regression results showed that the adsorption kinetics were accurately represented by the pseudo-second order model (R²>0.99). Based on the pseudo-second order model, the equilibrium adsorption capacity of MWCNTs was 14.79 mg/g.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

5

Opis fizyczny

p.2285-2293,fig.,ref.

Twórcy

autor
  • College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R.China
autor
  • College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R.China

Bibliografia

  • 1. KÜMMERER K. Antibiotics in the aquatic environment-a review-Part I. Chemosphere. 75, (4), 417, 2009.
  • 2. LE-MINH N., KHAN S., DREWES J., STUETZ R. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 44, (15), 4295, 2010.
  • 3. KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators. 8, (1), 1, 2008.
  • 4. ZHOU L., YING G., ZHAO J., YANG J., WANG L., YANG B., LIU S. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 159, (7), 1877, 2011.
  • 5. BLACKWELL P., KAY P., ASHAUER R., BOXALL A. Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere. 75, (1), 13, 2009.
  • 6. ROIG B., BROGAT M., MOMPELAT S., LEVEQUE J., CADIERE A., THOMAS O. Inter- laboratory exercise on antibiotic drugs analysis in aqueous samples. Talanta. 98, 157, 2012.
  • 7. TOGOLA A., BUDZINSKI H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A. 1177, (1), 150, 2008.
  • 8. SCOTT L., MCGEE P., WALSH C., FANNING S., SWEENEY T., BLANCO J., KARCZMARCZYK M., EARLEY B., LEONARD N., SHERIDAN J. Detection of numerous verotoxigenic E. Coli serotypes, with multiple antibiotic resistance from cattle faeces and soil. Vet. Microbiol. 134, (3-4), 288, 2009.
  • 9. YANG Q., ZHANG J., ZHU K., ZHANG H. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J. Environ. Sci. 21, (7), 954, 2009.
  • 10. ZHANG H., LIU P., FENG Y., YANG F. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar. Pollut. Bull. 73, (1), 282, 2013.
  • 11. RICKMAN K., MEZYK S. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water. Chemosphere. 81, (3), 359, 2010.
  • 12. YU H., NIE E., XU J., YAN S., COOPER W., SONG W. Degradation of diclofenac by advanced oxidation and reduction processes: Kinetic studies, degradation pathways and toxicity assessments. Water Res. 47, (5), 1909, 2013.
  • 13. MICHAEL I., HAPESHI E., MICHAEL C., VARELA A., KYRIAKOU S., MANAIA C. M., FATTA-KASSINOS D. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res. 46, (17), 5621, 2012.
  • 14. NASUHOGLU D., RODAYAN A., BERK D., YARGEAU V. Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem. Eng. J. 189-190, 41, 2012.
  • 15. WATKINSON A., MURBY E., COSTANZO S. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 41, (18), 4164, 2007.
  • 16. HUSSAIN S., PRASHER S. PATEL R. M. Removal of ionophoric antibiotics in free water surface constructed wetlands. Ecol. Eng. 41, 13, 2012.
  • 17. MAGUREANU M., PIROI D., MANDACHE N., DAVID V., MEDVEDOVICI A., BRADU C., PARVULESCU V. Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 45, (11), 3407, 2011.
  • 18. RIVERA-UTRILLA J., PRADOS-JOYA G., SÁNCHEZ-POLO M., FERRO-GARCÍA M., BAUTISTA-TOLEDO I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J. Hazard Mater. 170, (1), 298, 2009.
  • 19. TIAN Z., XU J., LI L., ZHANG Y., HE Y., GUO C. Adsorption of carbamazepine on montmorillonite KSF. Fresen. Environ. Bull. 21, 2201, 2012.
  • 20. LEODOPOULOS C., DOULIA D., GIMOUHOPOULOS K. Study on adsorption behavior of humic acid on acidified montmorillonite: kinetic and equilibrium modeling, comparison of linear and non-linear methods. Fresen. Environ. Bull. 22, 228, 2013.
  • 21. BAYRAM E., HODA N., AYRANCI E. Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth. J. Hazard Mater. 168, (2-3), 1459, 2009.
  • 22. RAMOS M., BONELLI P., CUKIERMAN A., RIBEIRO CARROTT M., CARROTT P. Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor. J. Hazard Mater. 177, (1), 175, 2010.
  • 23. REN X., CHEN C., NAGATSU M., WANG X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 170, (2-3), 395, 2011.
  • 24. XU J., SHENG T., HU Y., BAIG S., LV X., XU X. Adsorption-dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites. Chem. Eng. J. 219, 162, 2013.
  • 25. LIU H., LIU W., ZHANG J., ZHANG C., REN L., Li Y. Removal of cephalexin from aqueous solutions by original and Cu (II)/Fe (III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J. Hazard Mater. 185, (2), 1528, 2011.
  • 26. WU Q., LI Z., HONG H. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Appl. Clay Sci., 74, 66, 2013.
  • 27. XU L., DAI J., PAN J., LI X., HUO P., YAN Y., ZOU X., ZHANG R. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chem. Eng. J. 174, 221, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-515acdfe-322d-4e15-8a2f-54cfa926dc98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.