PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 3 |

Tytuł artykułu

Effect of cobalt chloride on soybean seedlings subjected to cadmium stress

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Contamination of the environment with heavy metals such as Cd is a serious problem of modern world. Exposure of plants to Cd leads to oxidative stress, inhibition of respiration and photosynthesis, increased rate of mutation and, as a consequence, stunted growth and yield decrease. One of the common reactions of plants to cadmium stress is over-production of ethylene, however the exact role of this hormone in plants response to Cd is still unrecognized. The aim of the present study is evaluation of the impact of an ethylene synthesis inhibitor, Co, on the response of soybean seedlings to cadmium stress. The experiments included measurements of growth, cell viability, ethylene production and expression of genes associated with cellular signaling in soybean seedlings exposed to CdCl2 (with Cd in a concentration of 223 μM) and/or CoCl2 (with Co in concentration of 4.6 μM). Surprisingly, the results show that Co has no effect on ethylene biosynthesis, however, it affects cell viability and expression of Cd-induced genes associated with plant signaling pathways. The affected genes encode mitogen-activated protein kinase kinase2 (MAPKK2), nitrate reductase and DOF1 and bZIP2 transcription factors. The role of Co in plants response to cadmium stress and its potential use as an ethylene inhibitor is discussed.

Wydawca

-

Rocznik

Tom

83

Numer

3

Opis fizyczny

p.201-207,fig.,ref.

Twórcy

  • Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Groupe de Recherche en Physiologie Vegetale (GRPV), Earth and Life Institute, Universite Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.13, 1348 Louvain-la-Neuve, Belgium
autor
  • Groupe de Recherche en Physiologie Vegetale (GRPV), Earth and Life Institute, Universite Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.13, 1348 Louvain-la-Neuve, Belgium
autor
  • Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • 1. Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucińska- Sobkowiak R, Gzyl J, Pawlak-Sprada S, et al. Nitric oxide implicationin cadmium-induced programmed cell death in roots and signalingresponse of yellow lupine plants. Plant Physiol Biochem. 2012;58:124–134. http://dx.doi.org/10.1016/j.plaphy.2012.06.018
  • 2. Nedjimi B, Daoud Y. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulicconductivity and nutrient uptake. Flora. 2009;204(4):316–324.http://dx.doi.org/10.1016/j.flora.2008.03.004
  • 3. Sun Z, Wang L, Chen M, Wang L, Liang C, Zhou Q, et al. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicol Env Saf. 2012;79:62–68. http://dx.doi. org/10.1016/j.ecoenv.2011.12.004
  • 4. Yang Y, Li F, Bi X, Sun L, Liu T, Jin Z, et al. Lead, zinc, and cadmium in vegetable/crops in a zinc smelting region and its potential humantoxicity. Bull Env Contam Toxicol. 2011;87(5):586–590. http://dx.doi.org/10.1007/s00128-011-0388-7
  • 5. Arteca RN, Arteca JM. Heavy-metal-induced ethylene production in Arabidopsis thaliana. J Plant Physiol. 2007;164(11):1480–1488. http://dx.doi.org/10.1016/j.jplph.2006.09.006
  • 6. Chmielowska-Bąk J, Lefèvre I, Lutts S, Deckert J. Short term signaling responses in roots of young soybean seedlings exposed tocadmium stress. J Plant Physiol. 2013;170(18):1585–1594. http://dx.doi.org/10.1016/j.jplph.2013.06.019
  • 7. Masood A, Iqbal N, Khan NA. Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard: Ethylene in S-mediated alleviation of Cd stress. Plant Cell Env. 2012;35(3):524–533. http://dx.doi.org/10.1111/j.1365-3040.2011.02432.x
  • 8. Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, et al. Cadmium effect on oxidative metabolismof pea (Pisum sativum L.) roots. Imaging of reactive oxygen species andnitric oxide accumulation in vivo. Plant Cell Env. 2006;29(8):1532–1544. http://dx.doi.org/10.1111/j.1365-3040.2006.01531.x
  • 9. Wu L, Zhang Z, Zhang H, Wang XC, Huang R. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidativestress response enhances tolerance of tobacco seedlings to salt,drought, and freezing. Plant Physiol. 2008;148(4):1953–1963. http://dx.doi.org/10.1104/pp.108.126813
  • 10. Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, et al. Cadmium activates Arabidopsis MPK3 and MPK6 via accumulationof reactive oxygen species. Phytochemistry. 2010;71(5–6):614–618.http://dx.doi.org/10.1016/j.phytochem.2010.01.005
  • 11. Maksymiec W. Effects of jasmonate and some other signalling factors on bean and onion growth during the initial phase of cadmium ction. Biol Plant. 2011;55(1):112–118. http://dx.doi.org/10.1007/ s10535-011-0015-9
  • 12. Yakimova ET, Kapchina-Toteva VM, Laarhoven LJ, Harren FM, Woltering EJ. Involvement of ethylene and lipid signalling in cadmiuminducedprogrammed cell death in tomato suspension cells. PlantPhysiol Biochem. 2006;44(10):581–589. http://dx.doi.org/10.1016/j.plaphy.2006.09.003
  • 13. Asgher M, Khan NA, Khan MIR, Fatma M, Masood A. Ethylene production is associated with alleviation of cadmium-induced oxidativestress by sulfur in mustard types differing in ethylene sensitivity.Ecotoxicol Env Saf. 2014;106:54–61. http://dx.doi.org/10.1016/j.ecoenv.2014.04.017
  • 14. Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S. Controlling ethylene responses in flowers at the receptor level.Biotech Adv. 2006;24(4):368–381. http://dx.doi.org/10.1016/j.biotechadv.2006.01.007
  • 15. Marschner H. Mineral nutrition of higher plants. 2nd ed. London: Academic Press; 1995.
  • 16. Palit S, Sharma A, Talukder G. Effects of cobalt on plants. Bot Rev. 1994;60(2):149–181. http://dx.doi.org/10.1007/BF02856575
  • 17. Hasen SA, Hayat S, Wani AS, Ahmed A. Establishment of sensitive and resistant variety of tomato on the basis of photosynthesis andantioxidative enzymes in the presence of cobalt applied as shotgunapproach. Braz J Plant Physiol. 2011;23:175–185.
  • 18. Jaleel CA, Jayakumar K, Chang-Xing Z, Azooz MM. Antioxidant otentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics. 2009;2(3):120–126.
  • 19. Rastgoo L, Alemzadeh A. Biochemical responses of Gouan (Aeluropus littoralis) to heavy metal stress. Aust J Crop Sci. 2011;5:375–383.
  • 20. Yıldız M, Ciğerci İH, Konuk M, Fatih Fidan A, Terzi H. Determination of genotoxic effects of copper sulphate and cobalt chloride inAllium cepa root cells by chromosome aberration and comet assays.Chemosphere. 2009;75(7):934–938. http://dx.doi.org/10.1016/j.chemosphere.2009.01.023
  • 21. Chmielowska J, Deckert J. Activity of peroxidases and phenylalanine ammonia-lyase in lupine and soybean seedlings treated with copper and an ethylene inhibitor. Biol Lett. 2008;45:59–67.
  • 22. Lehotai N, Pető A, Bajkán S, Erdei L, Tari I, Kolbert Z. In vivo and in situ visualization of early physiological events induced by heavymetals in pea root meristem. Acta Physiol Plant. 2011;33(6):2199–2207.http://dx.doi.org/10.1007/s11738-011-0759-z
  • 23. Cristescu SM, De Martinis D, te Lintel Hekkert S, Parker DH, Harren FJM. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl Env Microbiol. 2002;68(11):5342–5350. http://dx.doi. org/10.1128/AEM.68.11.5342-5350.2002
  • 24. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res. 2001;29(9):45e–45. http://dx.doi.org/10.1093/nar/29.9.e45
  • 25. Zhao S, Fernald RD. Comprehensive algorithm for quantitative realtime polymerase chain reaction. J Comput Biol. 2005;12(8):1047–1064.http://dx.doi.org/10.1089/cmb.2005.12.1047
  • 26. Ahmad P, Ozturk M, Gucel S. Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (Brassica juncea L.). Fresen Env Bull. 2012;12:2953–2961.
  • 27. Dhankhar R, Solanki R. Effect of copper and zinc toxicity on physiological and biochemical parameters in Vigna mungo (L.) Hepper. Int J Pharma Bio Sci. 2011;2:553–565.
  • 28. Chang C, Wang B, Shi L, Li Y, Duo L, Zhang W. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate. J Plant Physiol.2010;167(14):1152–1156. http://dx.doi.org/10.1016/j.jplph.2010.03.018
  • 29. Koehl J, Djulic A, Kirner V, Nguyen TT, Heiser I. Ethylene is required for elicitin-induced oxidative burst but not for cell death induction intobacco cell suspension cultures. J Plant Physiol. 2007;164(12):1555– 1563. http://dx.doi.org/10.1016/j.jplph.2007.05.012
  • 30. Locke JM. Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J Exp Bot. 2000;51(352):1843–1849. http://dx.doi.org/10.1093/jexbot/51.352.1843
  • 31. Santana-Buzzy N, Canto-Flick A, Iglesias-Andreu LG, Montalvo- eniche MC, López-Puc G, Barahona-Pérez F. Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. HortScience. 2006;41(2):405–409.
  • 32. Tamimi SM, Timko MP. Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolusvulgaris L.). Plant Soil. 2003;257(1):125–131. http://dx.doi.org/10.1023/A:1026280517660
  • 33. Kumar GNM, Knowles NR. Wound-induced superoxide production and PAL activity decline with potato tuber age and wound healing ability. Physiol Plant. 2003;117(1):108–117. http://dx.doi. org/10.1034/j.1399-3054.2003.1170114.x
  • 34. Lavoie M, Fortin C, Campbell PGC. Influence of essential elements on cadmium uptake and toxicity in a unicellular green alga: theprotective effect of trace zinc and cobalt concentrations. Env ToxicolChem. 2012;31(7):1445–1452. http://dx.doi.org/10.1002/etc.1855
  • 35. Agrawal GK, Rakwal R, Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues.Biochem Biophys Res Commun. 2002;294(5):1009–1016. http://dx.doi. org/10.1016/S0006-291X(02)00571-5
  • 36. Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R. Transient regulation of jasmonic acid-inducible rice MAP kinase gene (Os-BWMK1) by diverse biotic and abiotic stresses. Plant Physiol Biochem.2003;41(4):355–361. http://dx.doi.org/10.1016/S0981-9428(03)00030-5
  • 37. Jonak C, Nakagami H, Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper andcadmium. Plant Physiol. 2004;136(2):3276–3283. http://dx.doi.org/10.1104/pp.104.045724
  • 38. Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death: NO and MPK6 regulate Cd2+- induced PCD. Plant Cell Env. 2013;36(1):1–15. http://dx.doi. org/10.1111/j.1365-3040.2012.02543.x
  • 39. Dguimi HM, Debouba M, Ghorbel MH, Gouia H. Tissue-specific cadmium accumulation and its effects on nitrogen metabolism in tobacco(Nicotiana tabaccum, Bureley v. Fb9). CR Biol. 2009;332(1):58–68.
  • 40. Gill SS, Khan NA, Tuteja N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it upregulates sulfur assimilation and antioxidant machinery in gardencress (Lepidium sativum L.). Plant Sci. 2012;182:112–120. http://dx.doi.org/10.1016/j.plantsci.2011.04.018
  • 41. Huang H, Xiong ZT. Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth inrice seedlings. Pestic Biochem Physiol. 2009;94(2–3):64–67. http://dx.doi.org/10.1016/j.pestbp.2009.04.003
  • 42. Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins f nitric oxide. Trends Plant Sci. 2011;16(3):160–168. http://dx.doi. org/10.1016/j.tplants.2010.11.007
  • 43. Chmielowska-Bąk J, Deckert J. A common response to common danger? Comparison of animal and plant signaling pathways involvedin cadmium sensing. J Cell Commun Signal. 2012;6(4):191–204. http://dx.doi.org/10.1007/s12079-012-0173-3
  • 44. Chen F, Wang F, Sun H, Cai Y, Mao W, Zhang G, et al. Genotypedependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul. 2010;29(4):394–408. http://dx.doi.org/10.1007/s00344-010-9151-2
  • 45. Kopyra M, Stachoń-Wilk M, Gwóźdź EA. Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cellsuspension. Acta Physiol Plant. 2006;28(6):525–536. http://dx.doi.org/10.1007/s11738-006-0048-4
  • 46. Chmielowska-Bąk J, Deckert J. Nitric oxide mediates Cd-dependent induction of signaling- associated genes. Plant Signal Behav.2013;8(12):e26664. http://dx.doi.org/10.4161/psb.26664
  • 47. Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, et al. Nitric oxide contributes to cadmium toxicity in Arabidopsis bypromoting cadmium accumulation in roots and by up-regulatinggenes related to iron uptake. Plant Physiol. 2009;149(3):1302–1315.http://dx.doi.org/10.1104/pp.108.133348
  • 48. Huerta-Ocampo JA, León-Galván MF, Ortega-Cruz LB, Barrera- Pacheco A, De León-Rodríguez A, Mendoza-Hernández G, et al.Water stress induces up-regulation of DOF1 and MIF1 transcriptionfactors and down-regulation of proteins involved in secondarymetabolism in amaranth roots (Amaranthus hypochondriacus L.):proteomic and transcriptomic analysis of amaranth roots under drought stress. Plant Biol. 2011;13(3):472–482. http://dx.doi. org/10.1111/j.1438-8677.2010.00391.x
  • 49. Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negativeregulator of ABA signaling and confer salt and freezing tolerance intransgenic Arabidopsis. Planta. 2008;228(2):225–240. http://dx.doi.org/10.1007/s00425-008-0731-3

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-514e56b0-be4a-4ff5-a9c7-9494a2aec485
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.