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S u m m a r y .  Mathematical model of disk induction 
motor free rotor motion has been enhanced. This model 
accounts for the effect of moving electromagnetic forces 
and the forces, counteracting the movement, such as 
viscous friction force and sliding friction force. Based 
on new equations of free rotor movement, the criterion 
of its steady motion, including design-engineering 
characteristics of the electrical machine, has been 
specified.
K e y  w o r d s .  Free circular rotor, stability criterion. 

INTRODUCTION

One of the upcoming trends in modern 
machine-building industry is generating 
machines with direct drive of working tool or 
operating device [11, 18]. Using a special 
structure disk induction motor (DIM), circular 
tool can be set in steady rotational motion and 
kept in space without mechanical support and 
electrical contact through the magnetic forces 
[24, 25]. Such an electrical machine will 
enable to enhance direct drive constructions 
efficiency through combining rotor functions 
of the motor with working tool or operating 
device of technological machine. The problem 
of operating device stability control arises 
when developing technological machines 
based on DIM with no mechanical support 
rotor [2, 5]. When a rolling rotor is under the 
action of external forces, which generate its 
mass-center displacement, it should resist 

them, and when external force is not applied 
the rotor should return in equilibrium position. 
Since perturbing factors are always present in 
reality, the research of stability gains the 
utmost theoretical and practical importance.  

METHODS OF RESEARCH 

Stability theory has been created by 
many mathematicians, mechanics and 
physicists. Mathematician A.M. Lyapunov [2, 
12] made significant contribution in the 
stability theory.

We suggest to use displacement of the 
mass center from its initial position as a 
parameter to evaluate circular operating 
element (COE) motion stability. Let the initial 
position be the one at which symmetry axis of 
the operating element and the end stator of 
electric machine coincide. 

We denominate real variable determining 
DIM rotor displacement as e. We assume that 
rotor motion (i.e. change of e with time t) is 
described with independent differential 
equation, i.e. the equation that doesn’t contain 
independent variable [5, 14]: 

)(ef
dt

de
, (1) 
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where: )(ef  – is a known function of the 

variable e.

Function );( 0ete  is the solution of this 

equation at 0

0
ee

t
. Then, according to 

Lyapunov’s definitions, equilibrium position 

0e  is called stable if there is such a 00 , that 

at 00
0 ee  there is a solution );( 0ete  on the 

whole distance t0 . Also, for any 0

there must exist such a 0)(0  that if the 

condition 00
0 ee  is fulfilled, then 

0
0 );( eete  [7, 13, 14]. 

It means that if COE mass center in the 
initial time point is located close enough to the 

equilibrium (i.e. value 0
0 ee  is little), then 

describing a path in all subsequent time points 
it will remain close to the equilibrium position.  

Equilibrium 0e  is called asymptotically 

stable if it is stable according to Lyapunov’s 

definition, and if at sufficiently small 0
0 ee

the following condition is fulfilled [7, 13]: 

0
0 );(lim eete

t
. (2) 

That is, if COE mass center is displaced 
in relation to equilibrium, then it will tend to 
return in the equilibrium position with the 
course of time. 

According to Lyapunov’s motion 
stability theorem it is essential to know when 
the real components of roots of characteristic 
equation will be negative. The solution of this 
problem not involving the direct calculation of 
characteristic equation roots, is of the greatest 
interest [14].  

This problem was first put by D. 
Maxwell, and it was he, who gave solution to 
third-order equation, but in general this 
problem was solved by E. Raus. His solution is 
algorithmic. The analytical solution was 
obtained by A. Hurwitz [14]. 

Stability theory includes other methods 
and criteria allowing to evaluate mechanical 
systems motion stability based on qualitative 
analysis of motion differential equations. E.g., 
the methods of Vyshnegradskiy and Michailov 
are based on graphical representation of 

stability conditions [9, 16]. Unlike the 
mentioned above methods, Hurwitz criterion is 
algebraic, thus is more convenient to use and 
has become widely spread.  

Works [23, 27] studied free circular rotor 
mass center motion through differential 
equations taking into account environment 
resistance forces. Their values are in direct 
proportion to rotor motion speed. The 
criterion, determining the range of variation of 
certain system parameters that affect stability, 
has been obtained. This criterion is of little 
informativity since it doesn’t account for 
engineering-design characteristics of 
electromagnetic system. 

The second disadvantage of this criterion 
is that it leaves out of account sliding friction 
forces that often take place in technical 
systems. The work [30] shows that when rotor 
moves over the work space in air, coefficient 
of sliding friction significantly exceeds 
coefficient of air resistance. Moreover, the 
impact of rotor spin motion on viscous and 
sliding friction forces is not taken into account.

The purpose of current research is to 
obtain functional dependance of DIM free 
rotor stability criterion on design-engineering 
factors, which electric machines are 
characteristic of, and also on viscous friction 
and sliding friction forces. 

It is necessary to allow for the forces 
acting upon rotor, their values, direction and 
law of variation to research motion stability of 
electromechanical system.  

RESULTS OF RESEARCH 

The research of forces and torques acting 
on circular rotor in rotating field has 
demonstrated that rotor center displacement 
vector and its feedback do not coincide in 
direction [22]. 

When rotor center is displaced in relation 
to stator axis by the value e, the DIM rotor is 

under the action of tangential F  and radial rF

components of electromagnetic forces F  main 
vector [22, 28]. The line of action of the force 

rF  passes through rotor rotation center and, 

thus, doesn’t generate torque. If the direction 
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of rF  is opposite to the offset, the force 

stabilizes rotor motion, i.e. it will tend to 

return the rotor in equilibrium. The force F  is 

directed perpendicularly to the displacement 
and is always destabilizing.

We consider the movement of free 
circular rotor with depth h, outer radius ROR

and inner radius RIR , under the action of 

spinning axisymmetrical magnetic field of 
stator with outer and inner radiuses SOR  and 

SIR  correspondingly. We also assume that 

eRR SIRI  and eRR ROSO . Rotor depth h is 

much less than its outer radius ROR .

Fig. 1 shows the position of circular rotor 
over the stator surface at any given time t.
Coordinates x and y determine the current 
position of rotor center O1 in fixed coordinate 
system connected with stator center O.

The moment of electromagnetic forces 

oM  set rotor in spinning motion with constant 

angle velocity r  in regard to its mass center 

O1. Under the action of electromagnetic force 
F  the rotor moves with velocity v  in relation 

to stator. 
According to the definition, elastic 

system stiffness is force-motion ratio [19], 
where motion is caused by that force. As in the 
investigated system an argument is rotor center 
motion causing its feedback, then the notion of 
stiffness is remains the same. 

Fig. 1. Flow pattern of force on circular rotor 

Radial rF  and tangential F  components 

of the main vector of electromagnetic forces 
F  are determined by radial rD  and tangential 

D  stiffness: 

de

dF
D r

r ,  (3) 

de

dF
D .  (4) 

Taking into account the fact that force rF

counteracts the rotor displacement, whereas F

is always perpendicular to the displacement 
direction, we determine the projection of 
vector F  on coordinate axes OX and OY [22, 
28] as follows: 

yDxDF rx , (5) 

yDxDF ry . (6) 

Aside from the considered moving 
electromagnetic forces the rotor is under the 
action of rotor environment viscous friction 
force vF . Also, when circular rotor is moving 

on horizontal surface it is under the action of 
gravitation force that causes normal feedback 
and, as a result, generates sliding friction force 

slF  counteracting motion [28]. 

Let us set up differential equations of 
circular rotor movement when it is under the 
action of electromagnetic and motion 
resistance forces [3, 20]: 

,

,

,

2

2

2

2

2

2

oslv

yyslyv

xxslxv

MMM
dt

d
I

FFF
dt

yd
m

FFF
dt

xd
m

 (7) 

where: m – is rotor mass kg, I – second 
moment of circular rotor kg m2,, xvF  and yvF  – 

projections of viscous friction forces on 
coordinate axes OX and OY N, xslF  and yslF  – 

projections of sliding forces on coordinate 
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axes OX and OY N, vM  – moment of forces of 

viscous friction Nm, sl  – moment of forces 

of sliding friction Nm, oM  – spinning moment 

of electromagnetic forces Nm.
Since the relationship 1RORh  is 

correct for the considered circular rotor, the 
motion drag forces are insignificant and not 
taken into account. 

We assume that elementary force vFd  of 

viscous friction of rotor surface (fig. 2) 
elementary deck A on liquid or gaseous 
environment is proportional to the first degree 
of velocity and is always directed oppositely to 
movement. This force is derived from the 
expression [17]: 

rv dSFd Av ,  (8) 

where:  – is a drag factor 
2ms

kg , Av  – 

rotor surface elementary deck A motion 
velocity sm , dddSr  – elementary deck 

A area 2m .

Fig. 2. Design pattern for determining the forces and 
torques of viscous friction 

Since the rotor is in plain-parallel 
motion, the elementary deck A speed in 
relation to stator will be determined by the 
expression [3, 19, 20]: 

1AOA vvv , (9) 

where:
1AOv  – is relative speed of deck A

around rotor rotation center s
m .

Having denominated velocity vector v

projections on coordinate axes OX and OY as 

xv  and yv  correspondingly, we find 

projections Axv  and Ayv  of vector Av  on the 

same axes, allowing for the fact that 

r1AOv :

sinvv xAx r , (10) 

cosvv yAy r . (11) 

Taking into account (Eq. 10) and (Eq. 
11), we also obtain projections of vector vFd

on axes OX and OY from the expression (Eq. 
8):

dddF rxv )sinv( x , (12) 

dddF ryv )cosv( y . (13) 

Having integrated the expression (Eq. 
12) and (Eq. 13), we determine the projections 
of viscous friction force acting on the rotor 
[15]: 

xvrxv SF , yvryv SF ,  (14) 

where: )( 22
RIROr RRS  – is circular rotor 

surface area 2m .

From the expression (Eq. 14) it is seen 
that viscous friction force depends on 
environment properties, rotor area and its 
motion speed in relation to stator, but doesn’t 
depend on rotation frequency.

Let us find torque vdM  of viscous 

friction elementary force vFd  in regard to rotor 

rotation center:  

cossin yvxvv dFdFdM . (15) 

Having put expression (Eq. 12) and (Eq. 
13) into (Eq. 15), we obtain: 

dd

dM

r

rv

)cos)cosv(

sin)sinv((

2
y

2
x . (16) 
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Having integrated (Eq. 16), we get: 

)(
2

1 22
RIROrrv RRSM . (17) 

At 1RORh , distribution of standard 

pressure, which the moving rotor exerts on 
insulating substrate, is close to equilibrium. In 
this case sliding friction force, acting on rotor, 
is derived from the expression [6, 21]: 

2

0 v

vRO

RI

R

R r

r

r
sl dd

S

mg
F , (17) 

where:  – is sliding friction ratio, 

which we will consider as constant, m  – 

circular rotor mass kg, g  – gravitational 

acceleration 2s
m .

In works [6, 21] the expression (Eq. 17) 
has been integrated, based on this we can write 
the following: 

v

vx
slxsl FF ,

v

vy
slysl FF , (18) 

where: 2
y

2
x vvv  – rotor mass center 

speed vector modulus s
m , slF  – sliding 

friction force vector modulus N.
Having denoted the ratio between 

circular rotor inner radius and its outer radius 
as RORI RR  and having done the 

transformations [10, 15], we obtain projections 
of sliding friction force on coordinate axes: 

x
r

v
)1(RO

xsl R

mg
F , (19) 

y
r

v
)1(RO

ysl R

mg
F . (20) 

From (Eq. 19) and (Eq. 20) it is obvious 
that as rotor spin angle frequency rises, the 
sliding friction force falls, at simultaneous 
rotation and motion of the circular rotor.

Moment of friction is determined by the 
expression [6, 21]: 

2

0 v

vRO

RI

R

R r

r

r
sl dd

S

mg
M . (21) 

According to works [6, 21], after being 
integrated the expression (Eq. 21) looks like: 

r

r
slsl MM . (22) 

After the calculations have been done 
friction torque is determined according to the 
following expression [1, 15]: 

2

3

1

1

3

2
PHsl mgRM . (23) 

Having introduced the following 

denominations: rS ,
)1(r ROR

mg
 and 

)(
2

1 22
RIROr RRS  we put down the system of 

equations (Eq. 7), with allowance for the 
obtained above forces and moments of viscous 
and sliding friction, as well as electromagnetic 
forces and their torque: 

.

,)(

,)(

2

2

2

2

2

2

osl

r

r

MM
dt

d

dt

d
I

yDxD
dt

dy

dt

yd
m

yDxD
dt

dx

dt

xd
m

  (24) 

Rotational moment oM of

electromagnetic forces is determined from the 
expression [22]: 

22

2
442

2

1
)(

RIRO
RIROo

RR

e
RRBCM , (25) 

where: sinCC  and 
r

rs h
C

2

)(
,

B  – is averaged value of induction density in 
the working zone of DIM stator tesla,  – 

angle between the normal line to stator slot 
and the radius of the DIM working zone 
radian, s  – angle velocity the 
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electromagnetic field of the stator 1s , r  – 

DIM rotor resistivity constant mOhm .

Since the displacement RORe  and 

RIRe , then it is possible to assign the 

addend 0
22

2

RIRO RR

e
 with quite high 

precision. Then the third equation of the 
system does not depend on the x and y
coordinates and thus does not affect the rotor 
motion trajectory. 

The first two equations of the set (Eq. 
24) include only coordinates x and y of rotor 
mass center current position. Solution of these 
two equations determines rotor trajectory and, 
consequently, its displacement in relation to 
stator. The third equation of the set does not 
depend on x and y coordinates and thus doesn’t 
affect rotor trajectory. Besides, as rotor rotates 
with constant angle frequency ( constp ), the 

product 0
2

2

dt

d
I  and resistance forces torque 

are balanced by electromagnetic forces torque. 
Since the resistance torque values does not 
depend on displacement e, electromagnetic 
torque oM  remains unchanged.  

In this case, it is enough to consider the 
first two equations of the set (Eq. 24) to 
analyze rotor motion stability. As this set of 
equations is linear and independent, we use 
Hurwitz criterion [14] to analyze its stability. 

For this purpose we convert the first two 
equations of the set (Eq. 24) into the fourth-
order differential equation: 

.0)()(2

))(2(

)(2

22)1(

)2(2

)3()4(2

yDDyD

ymD

ymym

rr

r  (26) 

The characteristic equation 
corresponding to (Eq. 26) is as follows: 

043
2

2
3

1
4

0 apapapapa .  (27) 

where: 2
0 ma , )(21 ma ,

2
2 )(2 rmDa ,

)(23 rDa , 22
4 DDa r .

Let us set up Hurwitz determinant from 
these coefficients: 

420

31

420

31

0

00

0

00

aaa

aa

aaa

aa

. (28) 

According to Hurwitz criterion the 
system is stable when all main diagonal 
minors of determinant (Eq. 28) are greater than 
zero. If at least one minor is equal to zero, the 
system is in the state of indifferent 
equilibrium, and if it is less than zero  - the 
system is unstable.  

Let us find the minors of the matrix (Eq. 
28):

0)(21 m ,

0))()((2 2
2 rmDm ,

0))(()(4 222
3 mDDm r ,

0434 a . (29) 

The last two inequations (Eq. 29) are fair 
when the following condition is fulfilled: 

1
)(
2

2

mD

Dr . (30) 

Having put the expressions for  and 

into (Eq. 30) we obtain: 

1
)1( 2

2

mD

D

R

mg
S r

ROr
r . (31) 

Equation 31 determines the range of 
variation of electromechanical system 
parameters that provide its stability, and it is 
circular rotor steady motion criterion (stability 
criterion). 

Physical meaning of the expression (Eq. 
31) consists in the fact that if the inequity is 
realized then rotor rotation center tends to take 
the stator center position under the action of 
tangential F  and radial rF  forces. At that, as 

the displacement value e decreases, F  and rF

forces and rotor mass center motion velocity 
falls, too, but at 0e  these values are equal to 

zero, which corresponds to steady rotation 
motion. If the inequity (Eq. 31) is not realized, 
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the opposite process takes place, i.e. the rotor 
mass center moves away from stator center 
until the rotor falls outside the action of 
electromagnetic forces.  

Radial and tangential forces are derived 
from the expressions [29]: 

IRIIOROO
r

s
r RBRBe

sh
F coscos 2222 , (32) 

IRIIOROO
r

s RBRBe
sh

F sinsin 2222 , (33) 

where: s  – is rotor slip, OB  and IB  – 

induction density nearby the outer and inner 
stator contours correspondingly tesla, O  and 

I  – angle between the normal line to stator 

slot and the radius on outer and inner contour 
correspondingly radian.

To evaluate the circular rotor motion 
stability degree we introduce the safety factor 

sfK  that shows how many times left part of the 

inequity (Eq. 31) is bigger than 1. The greater 

sfK  is, the more steadily rotor moves. If sfK  is 

equal to one, it corresponds to the state of 
motion critical stability. If that coefficient is 
less than one, rotor motion is unsteady, it tends 
to fall outside the boundaries of stator 
magnetic field.  

Using expressions (Eq. 32) and (Eq. 33), 
we rewrite criterion (Eq. 31) as follows: 

.1
)sinsin(

coscos

)1)(1(

22222

2222

2

IRIIOROO

IRIIOROO

ROs
r

s

r
sf

RBRB

RBRB

sR

mg
S

shm
K

 (34) 

Stability criterion (Eq. 34) allows for the 
impact of rotor mass, its radial sizes and depth, 
rotor slip, electrical resistance, environmental 
resistance, distribution of induction density 
values in the running clearance, DIM stator 
slot direction. 

The stability criterion allows for the 
impact of operating environment through 
environmental resistance  and sliding friction 

 coefficients. It is obvious from the criterion 

(Eq. 34) that as these coefficients rise rotor 

stability increases, and according to 
expressions (Eq. 14), (Eq. 19) and (Eq. 20), 
environmental resistance forces vF  and slF  are 

proportional to  and . Consequently, as the 

forces counteracting rotor motion increase, 
rotor stability rises as well.  

From the rotation stability criterion (Eq. 
34) and expression (Eq. 25) it is obvious that 
the ratio between rotor resistivity constant and 
its depth hr  affects the safety factor sfK  and 

driving torque oM  oppositely. As hr  rises, 

safety factor sfK  increases while torque oM

declines. To increase the driving torque oM

DIM rotor is produced from low r  materials, 

like copper and aluminium. Rotor depth h  is 

determined by its process value [4, 8]. 
From all has been said it follows that 

design-engineering characteristics improving 
DIM efficiency lead to decline of stability of 
rotor without mechanical support. 

Stability criterion analysis showed that 
asymptotical stability condition is fulfilled 
when the following equation is adhered:

0sinsin 2222
BPBBHPHH RBRB .  (35) 

At that tangential force F  is equal to 

zero. 
As it is obvious from (Eq. 35) the 

condition 0F  is affected only by rotor radial 

sizes ( ROR , RIR ), elementary forces direction 

(angles O  and I ) and distribution of 

induction density in running clearance 

( OB , IB ). 

Rotor asymptotical stability always takes 
place when destabilizing force is absent, 
regardless of displacement e and is expressed 
with condition 0F . At that stability 

criterion, regardless of other parameters, tends 
to infinity. 

Let us consider three alternatives of 
DIM.

The first variant is characterized with 
conditions eRR ROSO  and eRR SIRI , i.e. 

rotor is always within stator magnetic field. 
Destabilizing force turns into zero when the 
equation (Eq. 35) is rendered.  
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This variant is the most common, since 
0F  is fulfilled in a broad range of variation 

for parameters included in (Eq. 35).  
For the second variant we assume that 

ROSO RR , and eRR SIRI . Then 0F  will 

be fulfilled at:  

O

I

O

I

RI

RO

B

B

R

R

sin

sin
2 . (36) 

Equation ROSO RR  reduces the number 

of active parameters, that to a certain extend 
simplifies rotor stability maintenance. From 
(Eq. 36) it is obvious that at constant 
geometric parameters of stator and rotor, zero 
value of destabilizing force F  can be achieved 

by changing IB  and OB  induction density 

values on the outer and inner contours of stator 
correspondingly.

The third variant of DIM construction is 
characterized with equation ROSO RR  and 

magnetic field uniformity in the working area, 
i.e. constBB IO . Rotor rotation stability 

condition takes the form of: 

O

I

RI

RO

R

R

sin

sin
2 .  (37) 

The latter variant makes condition 0F

absolutely stringent, in other words, the 
condition is set at accurate conformance of 
parameters that cannot be regulated in real 
machine.  

To ensure steady motion of rotor it is 
necessary that center directed force rF  appears 

and the equation (Eq. 35) is adhered as the 
rotor shifts. This can be achieved if the force 
F  pattern of change along the radius will not 

coincide with the force rF  pattern of change 

[26]. At that the stator slot tilt angle  must 

functionally depend on the radius. 

CONCLUSION 

1. The free rotor motion mathematical 
model refinement enabled to specify the stable 
motion criterion that allows for the impact of 

characteristics, like: rotor mass, sizes, 
electrical resistance, environmental resistance 
and sliding friction ratios, distribution of 
induction density in DIM running clearance 
and stator slots direction. The new criterion 
enabled to determine the impact of DIM 
design and engineering characteristics on free 
rotor stable motion. 

2. Based on the obtained stability 
criterion it has been detected that increase of 
viscous friction force and sliding friction force 
improves rotor motion stability. This property 
makes it possible to use DIM as a drive for 
circular operating devices of technological 
machines. 

3. If the electric machine efficiency is 
preserved, free rotor stability rise is possible in 
such system of electromagnetic forces where 
the rotor shift from center doesn’t lead to 
occurrence of tangential destabilizing force but 
causes only radial stabilizing force returning 
rotor to the center. 
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