PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 87 | 4 |

Tytuł artykułu

Short-term monitoring of Arctic trace metal contamination based on Cetrariella delisei bioindicator in Svalbard

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study focuses on short-term monitoring of trace metals in the Svalbard archipelago. Short-term studies using lichen bioindicators are important because temporary changes in lichen trace metal levels are mainly dependent on air pollutants. Here, we investigated temporal and spatial differences in the content of trace metals such as Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, and Zn measured in the lichen thalli of Cetrariella delisei. The temporal aspect was studied in the marine plain of Calypsostranda between 1988 and 2016 and that of Hornsundneset between 1985 and 2008. The spatial aspect was studied between Hornsundneset in 1985 and Calypsostranda in 1988 as well as between Hornsundneset in 2008 and Calypsostranda in 2016. The results revealed an increase in the concentration of Cr, Mn, Ni, and Co for both the aspects, while a decrease in the contents of Cu, Cd, and Mo was observed. Pb content varied, as Pb level increased with time in Hornsundneset but decreased in Calypsostranda. The Zn content showed no significant changes in both temporal and spatial aspects.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

87

Numer

4

Opis fizyczny

Article 3600 [10p.],fig.,ref.

Twórcy

autor
  • Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland
  • Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland
autor
  • Department of Soil Science and Soil Protection, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow, Poland
  • Department of Analytical Chemistry, Faculty of Chemistry, University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland

Bibliografia

  • 1. Arctic Monitoring and Assessment Programme. AMAP assessment 2002: heavy metals in the Arctic. Oslo: Arctic Monitoring and Assessment Programme; 2005.
  • 2. Weinbruch S, Wiesemann D, Ebert M, Schütze K, Kallenborn R, Stroem J. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny-Ålesund, Svalbard): an electron microscopy study. Atmos Environ. 2012;49:142–150. https://doi.org/10.1016/j.atmosenv.2011.12.008
  • 3. Shaw GE. The Arctic haze phenomenon. Bull Am Meteorol Soc. 1995;76(12):2403–2413. https://doi.org/10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2
  • 4. Nriagu JO. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature. 1979;279:409–411. https://doi.org/10.1038/279409a0
  • 5. Nriagu JO. A global assessment of natural sources of atmospheric trace metals. Nature. 1989;338(6210):47–49. https://doi.org/10.1038/338047a0
  • 6. Ruman M, Kozak K, Lehmann S, Kozioł K, Polkowska Z. Pollutants present in different components of the Svalbard archipelago environment. Ecological Chemistry and Engineering S. 2012;19(4):571–584. https://doi.org/10.2478/v10216-011-0040-9
  • 7. Samecka-Cymerman A, Wojtuń B, Kolon K, Kempers AJ. Sanionia uncinata (Hedw.) Loeske as bioindicator of metal pollution in polar regions. Polar Biol. 2011;34(3):381– 388. https://doi.org/10.1007/s00300-010-0893-x
  • 8. Riget FU, Asmund G, Aastrup P. The use of lichen (Cetrariella nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Sci Total Environ. 2000;245(1–3):137–148. https://doi.org/10.1016/S0048-9697(99)00439-8
  • 9. Steinnes E. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci Total Environ. 1995;160:243–249. https://doi.org/10.1016/0048-9697(95)04360-D
  • 10. Drbal K, Elster J, Komarek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 1992;11(2):99–101. https://doi.org/10.3402/polar.v11i2.6721
  • 11. Węgrzyn M, Wietrzyk P, Lisowska M, Klimek B, Nicia P. What influences heavy metals accumulation in arctic lichen Cetrariella delisei in Svalbard? Polar Sci. 2016;10(4):532– 540. https://doi.org/10.1016/j.polar.2016.10.002
  • 12. Garty J. Biomonitoring atmospheric heavy metals with lichens: theory and application. CRC Crit Rev Plant Sci. 2001;20(4):309–371. https://doi.org/10.1080/20013591099254
  • 13. Węgrzyn M, Lisowska M, Nicia P. The value of the terricolous lichen Cetrariella delisei in the biomonitoring of heavy metal concentrations in Svalbard. Pol Polar Res. 2013;34(4):375–382. https://doi.org/10.2478/popore-2013-0022
  • 14. van der Wal R, van Lieshout SMJ, Loonen MJJE. Differential effects of reindeer on high Arctic lichens. J Veg Sci. 2001;12:705–710. https://doi.org/10.2307/3236911
  • 15. Ziaja W, Dudek J, Lisowska M, Olech M, Ostafin K, Osyczka P, et al. Western Sørkapp Land natural environment transformation since the 1980s. Krakow: Jagiellonian University Press; 2011.
  • 16. Joly K, Jandt RR, Klein DR. Decrease of lichens in Arctic ecosystems: the role of wildfire, caribou, reindeer, competition and climate in north-western Alaska. Polar Res. 2009;28:433–442. https://doi.org/10.1111/j.1751-8369.2009.00113.x
  • 17. Allen-Gil SM, Ford J, Lasorsa BK, Monetti M, Vlasova T, Landers DH. Heavy metal contamination in the Taimyr Peninsula, Siberian Arctic. Sci Total Environ. 2003;301:119–138. https://doi.org/10.1016/S0048-9697(02)00295-4
  • 18. Naeth MA, Wilkinson SR. Lichens as biomonitors of air quality around a diamond mine, Northwest Territories, Canada. J Environ Qual. 2008;37(5):1675–1684. https://doi.org/10.2134/jeq2007.0090
  • 19. Sødergaard J, Johansen P, Asmund G, Rigét F. Trends of lead and zinc in resident and transplanted Flavocetraria nivalis lichens near a former lead– zinc mine in West Greenland. Sci Total Environ. 2011;409:4063–4071. https://doi.org/10.1016/j.scitotenv.2011.06.054
  • 20. Zhulidov AV, Robarts RD, Pavlov DF, Kämäri J, Gurtovaya TY, Meriläinen JJ, et al. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) north of the Norilsk Industrial Complex. Environ Monit Assess. 2011;181:539–553. https://doi.org/10.1007/s10661-010-1848-y
  • 21. Melke J, Uziak S. Heavy metals in soils and vascular plants of the Bellsund area (Spitsbergen). Polish Journal of Soil Science. 2006;34(2):20–33.
  • 22. Jóźwik Z. Heavy metals in tundra plants of Bellsund area, Spitsbergen. Pol Polar Res. 1990;11:401–409
  • 23. Jóźwik Z. Heavy metals in tundra plants of the Bellsund in West Spitsbergen, investigated in the years 1987–1995. Pol Polar Res. 2000;21:43–54.
  • 24. Grodzinska K, Godzik B. Heavy metals and sulphur in mosses from southern Spitsbergen. Polar Res. 1991;9(2):133–140. https://doi.org/10.3402/polar.v9i2.6786
  • 25. Wojtuń B, Samecka-Cymerman A, Kolon K, Kempers AJ, Skrzypek G. Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biol. 2013;36(12):1799–1809. https://doi.org/10.1007/s00300-013-1399-0
  • 26. Sirois A, Barrie LA. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995. J Geophys Res Atmos. 1999;104(D9):11599–11618. https://doi.org/10.1029/1999JD900077
  • 27. Sastre J, Sahuquillo A, Vidal M, Rauret G. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta. 2002;462(1):59–72. https://doi.org/10.1016/S0003-2670(02)00307-0
  • 28. STATISTICA (Data Analysis Software System). Version 10. Tulsa, OK: Statsoft Inc; 2011.
  • 29. Berg T, Kallenborn R, Manø S. Temporal trends in atmospheric heavy metal and organochlorine concentrations at Zeppelin, Svalbard. Arct Antarct Alp Res. 2004;36(3):284–291. https://doi.org/10.1657/1523-0430(2004)036[0284:TTIAHM]2.0.CO;2
  • 30. Garty J. Biomonitoring atmospheric heavy metals with lichens: theory and application. CRC Crit Rev Plant Sci. 2001;20(4):309–371. https://doi.org/10.1080/20013591099254
  • 31. Hestmark G, Skogesal O, Skullerud Ø. Growth, population density and population structure of Cetraria nivalis during 240 years of primary colonization. Lichenologist. 2005;37(6):535–541. https://doi.org/10.1017/S0024282905014891
  • 32. Beckett RP, Brown DH. The control of cadmium uptake in the lichen genus Peltigera. J Exp Bot. 1984;35:1071–1082. https://doi.org/10.1093/jxb/35.7.1071
  • 33. Brown DH. Mineral uptake by lichens. In: Brown DH, Hawksworth DL, Bailey RH, editors. Lichenology: progress and problems. London: Academic Press; 1976. p. 419–439.
  • 34. Nieboer E, Richardson DHS, Tomassini FD. Mineral uptake and release by lichens: an overview. Bryologist. 1978;81:226–245. https://doi.org/10.2307/3242185
  • 35. Garty J, Galun M, Kessel M. Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytol. 1979;82:159–168. https://doi.org/10.1111/j.1469-8137.1979.tb07571.x
  • 36. Bačkor M, Loppi S. Interactions of lichens with heavy metals. Biol Plant. 2009;53(2):214– 222. https://doi.org/10.1007/s10535-009-0042-y
  • 37. Brown DH. The location of mineral elements in lichens: implications for metabolism. In: Peveling E, editor. Progress and problems in lichenology in the eighties. Berlin: Cramer; 1987. p. 361–375. (Bibliotheca Lichenologica; vol 25).
  • 38. Osyczka P, Boroń P, Lenart-Boroń A, Rola K. Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res Int. 2018;25(2):1950–1961. https://doi.org/10.1007/s11356-017-0639-1
  • 39. Purvis OW. The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist. 1984;16:197–204. https://doi.org/10.1017/S0024282984000347
  • 40. Chisholm JE, Jones GC, Purvis OW. Hydrated copper oxalate, moolooite, in lichens. Mineral Mag. 1987;51(5):715–718. https://doi.org/10.1180/minmag.1987.051.363.12
  • 41. Sarret G, Manceau A, Cuny D, van Haluwyn C, Déruelle S, Hazeman JL, et al. Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol. 1998;32:3325–3330. https://doi.org/10.1021/es970718n
  • 42. Branquinho C, Catarino F, Brown DH, Pereira MJ, Soares A. Improving the use of lichens as biomonitors of atmospheric metal pollution. Sci Total Environ. 1999;232:67– 77. https://doi.org/10.1016/S0048-9697(99)00111-4
  • 43. Monnet F, Bordas F, Deluchat V, Baudu M. Toxicity of copper excess on the lichen Dermatocarpon luridum: antioxidant enzyme activities. Chemosphere. 2006;65:1806– 1813. https://doi.org/10.1016/j.chemosphere.2006.04.022
  • 44. Walther DA, Ramelov GJ, Beck JN, Young JC, Callahan JD, Marcon MF. Temporal changes in metal levels of the lichen Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana. Water Air Soil Pollut. 1990;53:189–200. https://doi.org/10.1007/BF00155003
  • 45. Azcue J, Mudroch A. Comparison of different washing, ashing, and digestion methods for the analysis of trace elements in vegetation. Int J Environ Anal Chem. 1994;57(2):151–162. https://doi.org/10.1080/03067319408027420
  • 46. Avango D, Hacquebord L, Aalders Y, de Haas H, Gustafsson U, Kruse F. Between markets and geo-politics: natural resource exploitation on Spitsbergen from 1600 to the present day. Polar Rec. 2001;47(1):29–39. https://doi.org/10.1017/S0032247410000069

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-50bd4d08-b0e4-4c44-9150-4d8994c1fd64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.