PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 | 4 |

Tytuł artykułu

A 3 tesla magnetic resonance imaging volumetric analysis of the hippocampal formation: dependence on handedness and age

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The hippocampal formation (HF) is one of the most important parts of the brain in the magnetic resonance imaging (MRI) volumetric analysis in various domains, but not completely from all aspects, including the handedness. The aim of our study was to evaluate the possible differences in the volume of the right and left HF among the healthy right-handed and left-handed subjects, and to determine whether the volume differences are age related. Materials and methods: The MRI of this prospective study was performed using T1 fast field echo (FFE) sequence. The 124 subsequent coronal slices (thickness 1.5 mm) were performed in each participant. The obtained HF volumes were normalised and statistically compared. Volunteers comprised 30 persons aged 22.0 years, 12 of whom were the left-handed, and 30 persons aged 75.2 years on average, 9 of whom were the left-handed. Results: The right and left HF volumes averaged 2.986 cm³ and 2.858 cm³ in the right-handed, and 2.879 cm³ and 3.020 cm³ in the left-handed young volunteers, as well as 2.728 cm³ and 2.650 cm³ in the right-handed, and 2.617 cm³ and 2.780 cm³ in the left-handed elderly persons. The HF volume ratios in the young left-handed participants showed a significant left-greater-than-right asymmetry. A significant difference was also noticed within the right-to-left volume ratios of the right- and left-handed young and elderly participants. The latter reduction in the HF volume within the aged group can be interpreted as a slight atrophy of the HF. Conclusions: There is a significant difference in the volumes of the left and right HF of the left-handed young participants. The age related HF volume differences were proven between the groups of the young and elderly volunteers. The obtained data should be included into the future MRI studies of the HF volumes in various clinical domains. (Folia Morphol 2015; 74, 4: 421–427)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Numer

4

Opis fizyczny

p.421-427,fig.,ref.

Twórcy

autor
  • Psychiatric Clinic “Laza Lazarević,” Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Department of Radiology, Institute of Radiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Institute of Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Clinic of Neurosurgery, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Bibliografia

  • 1. Anstey KJ, Maller JJ (2003) The role of volumetric MRI in understanding mild cognitive impairment and similar classifications. Aging Ment Health, 7: 238–250.
  • 2. Anstey KJ, Maller JJ, Meslin C, Christensen H, Jorm AF, Wen W, Sachdev P (2004) Hippocampal and amygdalar volumes in relation to handedness in adults aged 60–64. Neuroreport, 15: 2825–2829.
  • 3. Bhatia S, Bookheimer SY, Gaillard WD, Theodore WH (1993) Measurement of whole temporal lobe and hippocampus for MR volumetry: normative data. Neurology, 43: 2006–2010.
  • 4. Bilir E, Craven W, Hugg J, Gilliam F, Martin R, Faught E, Kuzniecky R (1998) Volumetric MRI of the limbic system: anatomic determinants. Neuroradiology, 40: 138–144.
  • 5. Briellmann RS, Syngeniotis A, Jackson GD (2001) Comparison of hippocampal volumetry at 1.5 tesla and at 3 tesla. Epilepsia, 42: 1021–1024.
  • 6. Carpenter MB (2001) Core text of neuroanatomy. Williams & Wilkinson, Baltimore.
  • 7. Cendes F, Leproux F, Melanson D, Sharbrough FW, Hirschorn KA, Meyer FB, Marsh WR, O’Brien PC (1993) Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Comput Assist Tomogr, 17: 206–210.
  • 8. Crivello F, Tzourio-Mazoyer N, Mazoyer B (2014) Longitudinal assesment of global and regional rate of grey matter atrophy in 1,172 healthy older adults: modulation by sex and age. PloS One, 9: e114478.
  • 9. Cuzzocreo JL, Yassa MA, Verduzco G, Honeycut NA, Scott DJ, Bassett SS (2009) Effect of handedness on fMRI activation in the medial temporal lobe during an auditory verbal memory task. Hum Brain Mapp, 30: 1271–1278.
  • 10. Elcombe EL, Lagopoulos J, Duffy S, Lewis SJ, Norrie L, Hickle IB, Naismith SL (2015) Hippocampal volume in older adults at risk of cognitive decline: the role of sleep, vascular risk, and depression. J Alzheimer’s Dis, 44: 1279–1290.
  • 11. Free SL, Bergin PS, Fish DR, Cook MJ, Shorvon SD, Stevens JM (1995) Methods for normalization of hippocampal volumes measured with MR. Am J Neuroradiol, 4: 637–643.
  • 12. Galaburda AM, Rosen GD, Sherman GF (1990) Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsychologia, 28: 529–546.
  • 13. Geddes AE, Huang XF, Newell KA (2014) GluN2B protein deficits in the left, but not the right, hippocampus in schizophrenia. BMC Psychiatry, 8: 274–281.
  • 14. Geuze E, Vermetten E, Bremner JD (2005) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry, 10: 160–184.
  • 15. Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen D, Vauss YC, Rapoport JL (1996) Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4-18 years. J Comp Neurol, 366: 223–230.
  • 16. Helenius J, Soinne L, Perkiö J, Salonen O, Kangasmäki A, Kaste M, Carano RA, Aronen HJ, Tatlisumak T (2002) Diffusion-weighted MR imaging in normal human brains in various age groups. Am J Neuroradiol, 23: 194–199.
  • 17. Honeycutt NA, Smith CD (1995) Hippocampal volume measurements using magnetic resonance imaging in normal young adults. J Neuroimaging, 5: 95–100.
  • 18. Horváth K, Kövér F, Kovács N, Kállai J, Nagy F (2002) Volumetric measurements of the hippocampus and amygdala with MRI in healthy adults. Orv Hetil, 143: 2145–2151.
  • 19. Immordino-Yang MH, Singh V (2103) Hippocampal contributions to the processing of social emotions. Hum Brain Mapp, 34: 945–955.
  • 20. Inskip PD, Tarone RE, Brenner AV, Fine HA, Black PM, Shapiro WR, Selker RG, Linet MS (2003) Handedness and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev, 12: 223–225.
  • 21. Jiang L, Cheng Y, Li Q, Tang Y, Shen Y, Li T, Feng W, Cao X, Wu W, Wang J, Li C (2014) Cross-sectional study of the association of cognitive function and hippocampal volume among healthy elderly adults. Shanghai Arch Psychiatry, 26: 280–287.
  • 22. Joo EY, Kim H, Suh S, Hong SB (2014) Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep, 37: 1189–1198.
  • 23. Knecht S (2004) Does language lateralization depends on the hippocampus? Brain, 127: 1217–1218.
  • 24. Laakso MP, Juottonen K, Partanen K, Vainio P, Soininen H (1997) MRI volumetry of the hippocampus: the effect of slice thickness on volume formation. Magn Reson Imag, 15: 263–265.
  • 25. Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT (1996) A modality-independent approach to spatial normalization of tomography images of the human brain. Hum Brain Mapp, 3: 209–223.
  • 26. Levita L, Bois C, Healey A, Smyllie E, Papakonstantinou E, Hartley T, Lever C (2014) The behavioural inhibition system, anxiety and hippocampal volume in a non-clinical populatiion. Biol Mood Anxiety Disord, 7: 4–12.
  • 27. Li YJ, Ga SN, Huo Y, Li SY, Gao XG (2007) Characteristics of hippocampal volumes in healthy Chinese from MRI. Neurol Res, 29: 803–806.
  • 28. Maller JJ, Anstey KJ, Réglade-Meslin C, Christensen H, Wen W, Sachdev P (2007) Hippocampus and amygdala volumes in a random community-based sample of 60–64 year olds and their relationship to cognition. Psychiatry Res, 156: 185–197.
  • 29. Maller JJ, Réglade-Meslin C, Anstey KJ, Sachdev P (2006) Sex and symmetry differences in hippocampal volumetrics: before and beyond the opening of the crus of the fornix. Hippocampus, 16: 80–90.
  • 30. McHugh TL, Saykin AJ, Wishart HA, Flashman LA, Cleavinger HB, Rabin LA, Mamourian AC, Shen L (2007) Hippocampal volume and shape analysis in an older adult population. Clin Neuropsychol, 21: 130–145.
  • 31. Mohandas AN, Bharath RD, Prathyusha PV, Gupta AK (2014) Hippocampal volumetry: Normative data in the Indian population. Ann Indian Acad Neurol, 17: 267–271.
  • 32. Mora F (2013) Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci, 15: 45–52.
  • 33. Mu Q, Xie J, Wen Z, Weng Y, Shuyun Z (1999) A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age. Am J Neuroradiol, 20: 207–211.
  • 34. Pedraza O, Bowers D, Gilmore R (2004) Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J Int Neuropsychol Soc, 10: 664–678.
  • 35. Petersen RC, Jack CR Jr, Xu YC, Waring SC, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Boeve BF, Kokmen E (2000) Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54: 581–587.
  • 36. Pruessner JC, Li LM, Serles W, pruessner M, Collins DL, Kabani N, Lupien S, Evans AC (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex, 10: 433–442.
  • 37. Pujol N, Penadés R, Junqué C, Dinov I, Fu CH, Catalán R, Ibarretxe-Bilbao N, Bargalló N, Bernardo M, Toga A, Howard RJ, Costafreda SG (2014) Hippocampal abnormalities and age in chronic schizophrenia: morphometric study across the adult lifespan. Br J Psychiatry, 205: 369–375.
  • 38. Ramezani M, Johnsrude I, Rasoulian A, Bosma R, Tong R, Hollenstein T, Harkness K, Abolmaesumi P (2014) Temporal-lobe morphology differs beween healthy adolescents and those with early-onset of depression. Neuroimage Clin, 14: 145–155.
  • 39. Savic I (2014) Asymmetry of cerebral gray and white matter and structural volumens in relation to sex hormones and chromosomes. Front Neurosci, 8: 1–13.
  • 40. Shinohara Y, Hirase H, Watanabe M, Itakura M, Takahashi M, Shigemoto R (2014) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci, 105: 19498–19503.
  • 41. Shu XJ, Xue L, Liu W, Chen FY, Zhu C, Sun XH, Wang XP, Liu ZC, Zhao H (2013) More vulnerability of left hand right hippocampal damage in right-handed patients with post-traumatic stress disorder. Psychiatry Res, 212: 237–244.
  • 42. Sivakumar PT, Kalmady SV, Venkatasubramanian G, Bharath S, Reddy NN, Rao NP, Kovoor JM, Jain S, Varghese M (2015) Volumetric analysis of hippocampal sub-regions in late onset depression: A 3 tesla magnetic resonance imaging study. Asian J Psychiatr, 13: 38–43.
  • 43. Sullivan EV, Marsh L, Pfefferbaum A (2005) Preservation of hippocampal volume throughout adulthood in healthy men and women. Neurobiol Aging, 26: 1093–1098.
  • 44. Szabo A, Xiong J, Lancaster J, Rainey L, Fox P (2001) Amygdalar and hippocampal volumetry in control participants: differences regarding handedness. Am J Neuroradiol, 22: 1342–1345.
  • 45. Szenkuti A, Guderian S, Schiltz K, Kaufmann J, Münte TF, Heinze HJ, Düzel E (2004) Quantitative MR analyses of the hippocampus: unspecific metabolic changes in aging. J Neurol, 25: 1345–1353.
  • 46. Voevodskaya O, Simmons A, Nordenskjöld R, Kullberg J, Ahiström H, Lind L, Wahlund LO, Larsson EM, Westman E (2014) The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front Aging Neurosci, 6: 264–272.
  • 47. Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S, Schaefer S, Heinze HJ, Düzel E, Bäckman L, Lindenberger U, Lövdén M (2014) Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp, 35: 4236–4248.
  • 48. Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry, 34: 1181–1188.
  • 49. Yavuz BB, Ariogul S, Cankurtaran M, Oguz KK, Halil M, Dagli N, Cankurtaran ES (2007) Hippocampal atrophy correlates with the severity of cognitive decline. Int Psychogeriatr, 19: 767–777.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-50b03291-1d0d-41e2-ad2d-427762227a8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.