PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 |

Tytuł artykułu

Myxobacteria as a potential biocontrol agent effective against pathogenic fungi of economically important forest trees

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The broad biocontrol properties of myxobacteria (mainly members of the genera Corallococcus and Myxococcus) isolated from forest soils against main fungal pathogens of pine seedlings were estimated. Among the myxobacterial strains studied (in vivo tests), the strongest antagonism towards fungi was noticed for the strains of the species Myxococcus virescens Thaxter and Corallococcus exiguus Reichenbach. They inhibited the fungal growth within the range 38–63%. The strongest inhibitory reaction towards Cylindrocarpon destructans (Zinssm.) Scholten was observed. A predominating part of myxobacteria (22 from among 30) inhibited the growth of Rhizoctonia solani Kühn. Myxobacteria suppressed any pathogenic action of Rhizoctonia solani (strain 411) towards Scots pine seedlings (in vitro tests). They produced extracellular (but not intracellular) acidic and neutral proteinases. None of the myxobacterial strain under examination produced chitinases. The 57% of the myxobacterial strains studied produced siderophores. The numbers of myxobacterial strains, obtained from under forest trees were in the following order: Betula pendula Roth. > Pinus sylvestris L. > Alnus glutinosa Gaertn. = Quercus robur L. The results gained in present work have proved potential use of myxobacteria as biocontrol agents against Rhizoctonia solani, common fungal pathogen of pine seedlings.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Opis fizyczny

p.13-24,fig.,ref.

Twórcy

autor
  • Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati – 444 602, Maharashtra, India

Bibliografia

  • Alexander D.B., Zuberer D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12: 39–45.
  • Behrens J., Flossdorf J., Reichenbach H. 1976. Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). International Journal of Systematic Bacteriology 26: 561–562.
  • Bressan W. 2003. Biological control of maize seed pathogenic fungi by use of actinomycetes. BioControl 48: 233–240.
  • Broglie K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvius C.J., Broglie R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.
  • Bull C.T., Shetty K.G., Subbarao K.V. 2002. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Disease 86: 889–896.
  • Chet I., Inbar J. 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology 48: 37–43.
  • Dawid W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiology Reviews 24: 403–427.
  • Dworkin M. 2007. Lingering puzzles about myxobacteria. Microbe 2: 18–24.
  • Hazen G.G., Hause J.A., Hubicki J.A. 1965. An automated system for the quantitative determination of proteolytic enzymes using azocasein. Annals of the New York Academy Science 130: 761–768.
  • Hocking D., Cook F.D. 1972. Myxobacteria exert partial control of damping-off and root disease in container-grown tree seedlings. Canadian Journal of Microbiology 18: 1557–1560.
  • Homma Y. 1984. Perforation and lysis of hyphae of Rhizoctonia solani and conidia of Cochliobolus miya beanus by soil myxobacteria. Phytopathology 74 :1234–1239.
  • Kerk D., Uhrig R.G., Moorhead G.B. 2013. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity. Plant Signaling & Behavior 8: e27365.
  • Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., Yi H., Won S., Chun J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology 62: 716–721.
  • Kloepper J.W., Leong J., Teintze M., Schroth M.N. 1980. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Current Microbiology 4: 317–320.
  • Lang E., Stackebrandt E. 2009. Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology 59: 2122–2128.
  • Lingappa Y., Lockwood J.L. 1962. Chitin media for selective isolation and culture of actinomycetes. Phytopathology 52: 317–323.
  • Mahadevan B., Crawford D.L. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme and Microbial Techology 20: 489–493.
  • Michałowska M.A. 2009. The occurrence and characterization of bacteria of the Myxococcales order isolated from selected types of Polish soils. Ph. D. Thesis, Autonomous Department of Microorganisms’ Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland. (In Polish with English summary)
  • Morgan A.D., MacLean R.C., Hillesland K.L., Velicer G.J. 2010. Comparative analysis of myxococcus predation on soil bacteria. Applied Environmental Microbiology 76: 6920–6927.
  • Paul E.A., Clark F.E. 1996. Soil Microbiology and Biochemistry, 2nd edn. Academic Press, San Diego.
  • Raheman F., Deshmukh S., Ingle A., Gade A., Rai M. 2011. Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomedicine and Engineering 3: 174–178.
  • Rai M., Yadav A., Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27: 76–83.
  • Rashidan K.K., Bird D.F. 2001. Role of predatory bacteria in the termination of a cyanobacterial bloom. Microbial Ecology 41: 97–105.
  • Reichenbach H. 1993. Biology of the myxobacteria: ecology and taxonomy. In: Myxobacteria II. Dworkin M., Kaiser D. (eds.). American Society for Microbiology, Washington, pp. 13–62.
  • Reichenbach H. 1999. The ecology of the myxobacteria. Environmental Microbiolgy 1: 15–21.
  • Reichenbach H. 2005. Order Myxococcales. In: Bergey’s Manual of Systematic Bacteriology, 2nd edn. Brenner D.J., Krieg N.R., Staley J.T. (eds.). Springer, pp. 1059–1144.
  • Reichenbach H., Dworkin M. 1981. The order Myxobacterales. In: The Prokaryotes, 1st edn. Starr K.P., Stolp H., Trüper H.G., Balows A., Schlegel H.G. (eds.). Springer-Verlag, Berlin, pp. 328–355.
  • Reichenbach H., Höfle G. 1993. Biologically active secondary metabolites from myxobacteria. Biotechnology Advances 11: 219–277.
  • Rodina A. 1968. Microbiological methods of water examination. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa. (In Polish)
  • Rodziewicz A., Sobieszczański J. 1988. Extracellular proteinases of microorganisms. Postępy Mikrobiologii 27: 55–74. (In Polish)
  • Rosenberg E., Varon M. 1984. Antibiotics and lytic enzymes. In: Myxobacteria. Development and Cell Interactions. Rosenberg E. (ed.). Springer-Verlag, New York, pp. 109–125.
  • Sharma A., Johri B.N., Sharma A.K., Glick B.R. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry 35: 887–894.
  • Shimkets L.J., Dworkin M., Reichenbach H. 2006. The myxobacteria. In: The Prokaryotes, 3nd. Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackerbrandt E. (eds.). Springer-Verlag, Heidelberg, pp. 31–115.
  • Singh B.N., Yadava J.N.S. 1976. Fructification and antagonistic effect of myxobacteria on eubacteria: lytic effect and fruiting body formation of Myxococcus, Chondrococcus and Angiococcus spp. Indian Journal of Experimental Biology 14: 68–70.
  • Sunkar S., Nachiyar C.V. 2012. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine 2: 953–959.
  • Vansuyt G., Robin A., Briat J.F., Curie C., Lemanceau P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Molecular Plant-Microbe Interactions 20: 441–447.
  • Vierheilig H., Alt M., Neuhaus J.-M., Boller T., Wiemken A. 1993. Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Molecular Plant-Microbe Interactions 6: 261–264.
  • Whooley M.A., O’Callaghan J.A., McLoughlin A.J. 1983. Effect of substrate on the regulation of exoprotease production by Pseudomonas aeruginosa ATCC 10145. Journal General Microbiology 129: 981–988.
  • Wrótniak-Drzewiecka W., Gaikwad S., Laskowski D., Dahm H., Niedojadło J., Gade A., Rai M. 2014. Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells. Austin Journal of Biotechnology and Bioengineering 1: 7.
  • Yuan W.M., Crawford D.L. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology 61: 3119–3128.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-508ce26d-6196-40e9-95a8-1f9ab7eab163
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.