Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 27 | 1 |

Tytuł artykułu

A study on fibre-reinforced concrete elements properties based on the case of habitat modules in the underwater sills

Warianty tytułu

Języki publikacji



Hydrotechnical constructions are mostly objects functioning in extreme conditions and requiring a custom-made construction project. In the case of using prefabricated elements, it is required to develop production, transport, assembly, conservation and repair technology. Concerning the problem of concrete cracks, modern repair systems allow positive effects to be achieved in many cases of concrete elements repair. In this work an attempt has been made to assess the properties of concrete, situated in the Baltic Sea environment, in which traditional rebar was partly replaced by dispersed fibre-phase. Fibre-reinforced concrete belongs to the group of composite materials. The presence of fibres helps to increase the tensile strength, flexural strength and resilience and also prevents the appearance of cracks. In the given paper we will also discuss basic parameters of steel and polymer fibres and the influence of both types of fibres on the maturing and hardened concrete. In this work special attention has been paid to the advantages of polypropylene and polymer fibres with regard to commonly-known steel fibres. The use of synthetic fibres will be advantageous in constructions where the reduction of shrinkage cracks and high resilience are essential. On top of that, the use of synthetic fibres is highly recommended when constructing objects that will be exposed to the impact of an aggressive environment. Undoubtedly, polymer fibres are resistant to the majority of corrosive environments. Fibre-reinforced concretes are a frequently implemented construction solution. The possibility of concrete modification allows the emergence of new construction materials with improved physical-mechanical properties, under the condition of being applied relevantly

Słowa kluczowe








Opis fizyczny



  • Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
  • Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
  • Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland


  • 1. Semrau I. (1990): Wpływ budowli hydrotechnicznych na brzeg morski. Brzeg morski (1), Studia i Materiały Oceanologiczne, Nr 55, PAN Komitet Badań Morza, pp. 185-200.
  • 2. Silvester R., Hsu J. R. C. (1997): Coastal stabilization, vol. 14, Advanced Series on Ocean Engineering, World Scientific, Singapore.
  • 3. Martins G. M., Amaral A. F., Wallenstein F. M., Neto A. I. (2009): Influence of a breakwater on nearby rocky intertidal community structure. Marine Environmental Research, 67(4-5) 237-245.
  • 4. Basiński T., Pruszak Z., Tarnowska M., Zeidler R. (1993): Ochrona brzegów morskich, Biblioteka Naukowa Hydrotechnika, No 17, IBW PAN, Gdańsk.
  • 5. Mariak A., Kurpinska M. (2018): The effect of macro polymer fibres length and content on the fibre reinforced concrete. MATEC Web of Conferences. DOI:10.1051/ matecconf/201821903004.
  • 6. Kristowski A., Grzyl B., Kurpinska M., Pszczoła M. (2018): The rigid and flexible road pavements in terms of life cycle costs. Creative Construction Conference 2018. DOI:10.3311/ CCC2018-030.
  • 7. Pawelska-Mazur M., Kurpinska M. (2005): Retrofitted VI bro-pressed pavement bricks and their impregnation in modern architecture. Keep Concrete Attractive - Proceedings of the Fib Symposium 2005.
  • 8. Li M., Li V. C. (2013): Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Materials and Structures/Materiaux et Constructions, 46(3), 405–420.
  • 9. Qiu J., Yang E. H. (2017): Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC). Cement and Concrete Research, 95, 65–74.
  • 10. Luo H., Wu Y., Zhao A. (2017): Hydrothermally synthesized porous materials from municipal solid waste incineration bottom ash and their interfacial interactions with chloroaromatic compounds. Journal of Cleaner Production, 162, 411–419.
  • 11. Skarżyński Ł., Suchorzewski J. (2018): Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Constr. Build. Mat. DOI: 10.1016/j.conbuildmat.2018.06.182
  • 12. Yoo D. Y., Banthia N. (2016): Mechanical properties of ultra-high performance fiber-reinforced concrete. A review. Cement and Concrete Composites, 73, 267–280.
  • 13. Yoo D. Y., Banthia N., Yoon Y. S. (2016): Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering, 99, 381–397.
  • 14. Yang J., Shin H., Yoo D. (2017): Benefits of using amorphous metallic fibers in concrete pavement for longterm performance. Archives of Civil and Mechanical Engineering, 17(4), 750–760.
  • 15. Tabatabaeian M., Khaloo A., Joshaghani A., Hajibandeh E. (2017): Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high strength SCC. Construction and Building Materials, 147, 497–509.
  • 16. Sideris K. K., Manita P., Chaniotakis E. (2009): Performance of thermally damaged fiber-reinforced concretes. Construction and Building Materials, 23, 1232–1239.
  • 17. Kurpinska, M. (2011): Properties of concrete impregnated using epoxy composition. Roads and Bridges, 10(1-2), 59-80.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.