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THE INFLUENCE OF NUMBER AND SIZE OF SAMPLE 
PLOTS ON MODELLING GROWING STOCK VOLUME 
BASED ON AIRBORNE LASER SCANNING 

Current  forest  growing  stock  inventory  methods  used  in  Poland are  based  on
statistical methods using field measurements of trees on circular sample plots.
Such measurements are carried out with traditional equipment, i.e. callipers and
range  finders.  Nowadays,  remote  sensing  based  inventory  techniques  are
becoming more popular and have already been applied in North America and
some Scandinavian  countries.  Remote  sensing based  forest  inventories  require
a certain amount of ground sample plots,  which serve either as reference data
used for model calibration and/or as a validation dataset for the assessment of the
accuracy of modelled variables.
Using a set of 900 ground sample plots and Airborne Laser Scanner (ALS) from
the Milicz forest district, a statistical model for the estimation of plot growing
stock volume was developed. Next, the developed model was once again fitted to
different variants of sample plot size and number of sample plots. Each variant
was selected from a full 900 sample plot set. The selection started from 800, 700,
600, …, down to 25 plots, respectively, and was carried out in proportion to the
dominant tree age range. To account for the area effect, each plot number variant
was similarly tested with various sample plot areas, i.e. 500, 400, …, 100 m2.
Sampling in each variant was repeated in order to take into account the effect of a
single  selection.  The  results  showed  a  strong  relationship  between  obtained
modelling  errors  and  the  size  and  number  of  used  sample  plots.  It  has  been
demonstrated that the number of sample plots has no influence on the accuracy of
GSV estimation above about 300-400 sample plots (about  500 sample plots for
bias),  whereas  sample  plot  size  has  a  visible  impact  on  estimation  accuracy,
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which  reduces  with  decreasing  sample  plot  size,  regardless  of  the  number  of
sample plots. If it is about precision, results showed that the influence of a single
selection to be relevant only below 300-400 plots (about 500 for bias) and the
same trend can be observed in each sample plot size variant. The results showed it
is possible to strongly reduce the number of ground sample plots (minimum 300-
400),  while  still  maintaining decent  accuracy and precision  levels,  at  least  in
similarly investigated forest conditions.

Keywords: ALS, LIDAR, forest inventory, sampling intensity

Introduction 

Forests  are  an  important  carbon  storage  reservoir  [Lindner  and  Karjalainen
2007] and one of the most basic sources of renewable energy [McKendry 2002].
Forest growing stock volume (GSV) is one of the most important characteristic
that  describes  available  wood  resources.  Increasing  human  pressure  on  the
environment and expanding demands for wood requires a need for more precise
forest  management,  hence  more  accurate  forest  measurements  [Tonolli  et  al.
2011]. 

The  development  of  GSV  inventory  methods  has  resulted  in  the
improvement of GSV estimation methods and tools. The appearance of remote
sensing (RS) data  on the market  immediately led to  them being used in  the
inventory of forest resources. Classical spectral data might be suitable for vast
areas [Holmström et al. 2001]. However, the forest stand level GSV inventory
(usually an  area  of  1-5  ha)  requires  more  precise  data.  The  development  of
Airborne Laser  Scanning (ALS) has  been a recent  innovation in  the  vertical
characterization  of  the  tree  and  stand  structures.  Moreover,  its  features  for
modelling GSV are superior to those of spectral RS data [Maltamo et al. 2006].
In commercial forests, there is a strong proportional relationship between stem
volume and biomass [Maltamo et al. 2016]; consequently, accurate ALS aided
biomass  estimates  are  also  good  volume  estimates  [Ruiz  et  al.  2014].  Thus
experience in using ALS data for predicting biomass can be also used to some
extent, for predicting GSV. 

ALS data can be used to model GSV by analysing point clouds based on
laser-derived height  quantiles  [Næsset  1997;  Næsset  2002;  Lim et  al.  2003],
Canopy Height  Model  (CHM)  quantiles  [Maltamo  et  al.  2006]  or  variables
acquired from single tree detection results [Hyyppä et al. 2012; Miścicki and
Stereńczak  2012].  Many  studies  use  area  based  methods  with  laser-derived
height  quantiles,  as these are some of the most  accurate approaches [Næsset
1997; Lim et al. 2003]. 

Apart from a method chosen for GSV prediction, sample plot sizes and their
number are important factors for the model development. The large number of
studies described in  Ruiz et al. [2014] used various sizes of sample plots from
0.01 ha up to 0.36 ha. The results of another study [Frazer et al. 2011] generally
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indicated that larger plots significantly reduce the edge effect and co-registration
errors.  Ruiz  et  al.  [2014]  suggested  that  sample  plots  used  for  volume
predictions  should  have  a  minimum size  of  500-600  m2.  The  same  authors
pointed out that larger plot sizes clearly increase the cost of fieldwork, while not
significantly  increasing  the  accuracy  of  the  prediction  models.  The  above-
-mentioned sample plot size is generally the maximum sample plot size used in
forest inventories, at least in Poland.

The number of plots is another important aspect to consider, regarding GSV
prediction  models.  To the  best  of  our  knowledge,  only a  limited  number  of
studies have explored a minimum number of sample plots required to estimate
the relationship between ALS metrics and GSV without systematic error. This
could be due to the limited amounts of available field data. For example, in the
study of Kallio et al. [2010] with the use of rather small samples (radii from
8-10 m), they found that the accuracy of estimated  Picea abies volumes at the
forest  stand level  did not  decrease until  the  number  of  plots was reduced to
below  200.  On the  other  hand,  the volume  estimation  accuracy  of  Pinus
sylvestris and deciduous tree  species  decreased remarkably as  the  number of
sample plots decreased. However, for all  species, the total volume root mean
square error (RMSE) were relatively high at the forest stand level: 74%, 91%,
and  33%  for  pine,  deciduous  trees  and  spruce,  respectively.  Gobakken  and
Næsset [2008] pointed out that “average standard deviation increased when the
number of sample plots was reduced”. 

From a practical perspective, the number of sample plots and their sizes are
the  most  crucial  variables  determining  the  costs  of  fieldwork  during  forest
inventories. For this reason, we evaluated the effects of a sample plot size and
the number of sample plots on GSV prediction at the sample plot level. Used
variants consisted of 25 to 900 plots, selected from 900 available plots, which
sizes varied from 0.01 to 0.05 ha.

This paper is arranged as follows: first, we describe the study area, LiDAR
data, and the performed fieldworks. Next, we provide the methodology with all
included variants of analysis, followed by the report, analysis, and discussion of
the obtained results. Finally, we state the overall conclusions. In this work, the
terms  growing  stock  volume,  standing  volume,  and  volume  are  used
interchangeably. Anywhere the expression “sample plot size” is used in the text,
this refers to the area of a single sample plot. Anywhere the expression “number
of sample plots” is used, this refers to the number of sample plots used for model
calibration. 

Materials and methods 

Study area

The study was  conducted  in  the  Milicz  Inspectorate  as  a  part  of  the  Milicz
District. In this territory, forested areas extend over 8 500 ha (greyed outline in
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fig. 1). Milicz is situated in south-west Poland, about 50 km north of Wrocław.
Despite a relatively high species diversity, Scots pine (Pinus sylvestris L.) is the
dominant tree species in the study area. Scots pine stands cover approximately
70% of  the  forest  district  area,  while  mixed pine-beech stands and pine-oak
stands cover up to 10% each. There is also a minor covering of beech (Fagus
sylvatica  L.), common alder (Alnus glutinosa Gaertn.) and silver birch (Betula
pendula Roth). The distribution of stand age classes is as follows: 40-60 years
(about 30% of the district’s area), 20-40 years and >120 years (about 15% each).
The remaining age classes, i.e. 1-20, 60-80 and 80-100 years, have similar shares
(about  10%  each).  The  average  standing  volumes  of  pine,  beech  and  oak
(Quercus sp. L.), the main species in the study area, are 300 m3 × ha-1 – pine and
beech, and 275 m3 × ha-1 – oak.

Fig. 1. Study area – Milicz forest district 

Field reference data

There were  900 circular  field  sample  plots  with  radii of  12.62  m (500 m2),
distributed over the study area in a regular grid pattern (350 m × 350 m). Field
measurements were conducted in summer 2015.  On each sample plot, all trees
with a diameter at breast height of at least 7 cm were calipered, and their heights
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measured with a Haglöf Vertex IV rangefinder. The volume of every single tree
was computed based on formulas commonly used in Polish forest management
planning [Bruchwald et  al.  2000].  A general  description of the data obtained
from the sample plots is presented in table 1.  The plot centre locations were
measured with a Global  Navigation Satellite System in Real  Time Kinematic
mode  (RTK GNSS)  using Virtual  Reference Stations  (VRS) technology.  The
horizontal precision of GNSS measurements was 0.044 m and vertical – 0.05 m.

Table  1.  Descriptive statistics of growing stock volume (GSV) values and species
proportion, based on data from the ground sample plots of 500 m2

Plots
No. of
sample
plots

Mean no.
of trees

per
sample

plot

GSV [m3 × ha-1] Species proportion [%]

Mean
Mini-
mum

Maxi-
mum SD Pine Oak Beech Birch Spruce Other

All sample
plots

900 40 379     7 1302 165 64 13   9   3   2   8

Pine
dominated

628 46 368   31 1002 138 91   1   2   2   1   3

Oak
dominated

  95 24 463   59 1206 223   3 86   3   1   2   5

Beech
dominated

  65 17 414   16   998 231   7   7 84   0   0   1

Birch
dominated

  12 36 231   42   350 104   9   4   2 68   0 17

Spruce
dominated

    7 33 345 169   584 160   7   0 15   7 69   2

Other   93 35 369     7 1302 182 13 11   8   8   4 56

ALS data

ALS  data  were  collected  in  August  2015  using  a  Riegl  LMSQ680i  laser
scanning  system with  a  360 kHz pulse  rate  frequency that  resulted  in  point
clouds with an average density of 10 pulses × m-2. The mean flight altitude was
550 m and the field of view of the scanning system was 60 degrees. Along with
the point clouds, the data provider generated a digital terrain model (DTM) with
a spatial  resolution of 0.5 m in TerraSolid software.  This  DTM was used to
normalize all returns from the raw point clouds.

Data preparation

The  first  data  preparation  step  was  to  create  vector  layers  delineating  the
geographical extents of the circular sample plots for the five variants of sample
plot  size.  The  first  variant  was  just  the  original  and  full  dataset  with  plot
characteristics computed on the basis of ground measurements. This dataset is
introduced in the  Ground reference data  section (i.e.  900 sample plots,  each
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500 m2 in  size).  Next,  the  geographical  extents  of  900  sample  plots  were
delineated again; however, this time the area of each sample plot was limited to
400 m2. Subsequently, these delineations of vector layers were performed again
for the sample plots limited to 300, 200 and 100 m2 (fig. 2A). Sample plots in
each area variant were circular.

Fig. 2. The main steps in the data preparation workflow

The next step was to compute the growing stock volumes [m3 × ha-1] of
every sample plot. The GSV for a given sample plot was the sum of the volumes
of the single trees growing within the sample plot of corresponding sample size.

The third data preparation step was to cut the original ALS point cloud (ALS
pc)  to  the  previously prepared  extent  of  sample  plots,  for  each  area  variant
(fig. 2C).  Based  on  the  truncated  point  cloud,  a  set  of  ALS  metrics  were
computed  for  each  sample  plot  in  each  area  variant  (fig.  2D).  Computed
statistics were mainly concerned with height values, as well as intensity and the
distribution/quantity of particular  echoes (in a specified height  stratum),  e.g.:
mean height, height percentiles, and more complex metrics such as the number
of first returns above the mean height value of all returns over a sample plot. The
final  dataset  prepared for analysis consisted of 5 (area variants)  × 900 (total
number of sample plots).  The following properties were determined for each
sample plot: ground estimated GSV, area, age class and a set of ALS pc metrics.
All  computations  were  conducted  in  the  R programming  language  based  on
original scripts.

Data analysis

The first data analysis step was to develop a relatively robust statistical model
that allowed the estimation of sample plot GSVs from calculated point cloud
metrics. This model was developed using a regression analysis of 900 sample
plots 500 m2 in size. Among the entire set of more than 100 point cloud metrics
characterizing  particular  sample  plots,  only  those  which  explained  the
underlying variation of the observed plot GSVs were selected, and those that
were not auto-correlated with each other.  In order to reach this,  all  variables
which had a coefficient of variance less than 20% were discarded assuming that
a low variability in predictor variable cannot sufficiently explain the variance of
the  dependent  variable.  Next,  all  those  variables  were  discarded,  which
coefficient  of  correlation  (r)  was  less  than  0.5  in  respect  to  the  dependent
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variable – ground GSV. Then, a stepwise regression was used to determine the
final model. As the result of this procedure, the original set of ALS metrics was
narrowed  down  to  19  predictor  variables.  An  ordinary least  square  multiple
regression  method  was  used  to  estimate the  final  model  parameters.  Model
selection was based on the following: (1) maximization of the R2

adjusted between
the  fitted  and  observed  GSV values,  and  (2)  the  relative  simplicity  of  the
equation  compared  to  other  competitive  models,  without  significant  loss  of
R2

adjusted. Equation 1 presents the general form of the final model:

GSV=a0+a1( x1∗x2)+a2 x3
2
+a3 x4 (1)

where: GSV – growing stock volume [m3 × ha-1] of a sample plot,
a0, a1, a2, a3 – regression coefficients of the model,
x1 – quadratic mean of point heights over a sample plot,
x2 – ratio, number of 1st returns above the mean point heights,

divided by the number of all 1st returns over a sample plot,
x3 – ratio, number of all returns above the mean point heights,

divided by the number of all returns over a sample plot,
x4 – ratio, number of last returns above the 9th height stratum

divided by the number of all last returns, where the height
stratum consists  of  returns  found  in  a  specified  height
interval  between  2  meters  above  ground  and  the  95th

height percentile [Næsset and Gobakken 2005; Gobakken
et al. 2012]. 

After the final model selection, an additional group of variants was added.
The following number of sample plots per variant of sample plot size were used:
800, 700, 600, 500, 400, 300, 200, 100, 50, and 25. The selection of specific
sample  plots  was  based  on  the  ground GSV distribution  proportional  to  the
dominant tree age of a given sample plot.  Sampling with a replacement was
used,  as  it  was  assumed  that  a  proper  number  of  iterations  would  exhaust
variation  among  all  the  sample  plot  GSVs  and  corresponding  point  cloud
metrics. It is worth mentioning, that sample plots were unique within each single
sampling (iteration), however, the same sample plot could be selected again in
subsequent  iterations.  Moreover,  the  number  of  iterations  for  each  analysed
number of sample plots variant, was required to be large enough to present a
range of possible cases. Since the mean values of the estimates were not of high
importance in this study (rather, the distribution of errors between repetitions)
the influence of a large number of repetitions was not so relevant to the analysis
and aims of the study. Table 2 presents the number of repetitions for each variant
of the number of sample plots.

In order to analyse the effects of the number of sample plots and sample plot
size  (sample  plot  area)  on the  GSV estimation at  the  sample  plot  level,  the
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previously  developed  model  was  fitted  to  each  variant  of  analysis,  i.e.  800
sample plots of 500 m2,  then 800 sample plots of 400 m2,  …, down to 800  

Table 2. Number of repetitions for each number of sample plots

Number of sample plots Number of repetitions

800   100
700   200

600   300

500   400

400   500

300   600

200   700

100   800

  50   900

  25 1000

sample plots of 100 m2. Subsequently, the model parameters were calibrated on
700 sample plots of 500 m2, 400 m2, …, down to 25 sample plots of 100 m2.
This process was repeated n times, according to a given variant of the number of
sample  plots  (table  2).  The  model  was  evaluated  at  each  repetition,  by
comparing the estimated and observed GSV values for 900 plots, independently
for each variant of sample plot size. The following errors were calculated from
the above described comparison for each variant of analysis and for each single
sampling:  relative  root  mean square  error  (%RMSE),  relative  mean  absolute
error  (%MAE),  relative BIAS (%BIAS) (equations:  2,  3,  4  respectively)  and
R2

adjusted.  Afterwards,  medians  and  quartiles  of  error  distribution  from  all
repetitions  for  each  variant  were  analysed  in  order  to  determine  how  GSV
estimation accuracy and precision depends on the number and area of sample
plots.

%RMSE=√∑i=1
n

(GSV ALSi−GSV REFi)
2

n
/GSV REF∗100 (2)

%MAE=
∑
i=1

n

∣GSV ALSi−GSV REFi∣

n
/GSV REF∗100 (3)
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%BIAS=
∑
i=1

n

(GSV ALSi−GSV REFi)

n
/GSV REF∗100 (4)

where: n –  number  of  sample  plots  (for  error  computation  it  was
always  900  sample  plots  regardless  of  the  variant  of
analysis),

GSVALSi – growing stock volume of  i-th sample plot, estimated for
a given  variant  of  analysis  based  on  ALS  point  cloud
metrics and the developed model,

GSVREFi − growing stock volume of  i-th sample plot, calculated on
the  basis  of  ground  data  for  a  given  sample  plot  size
variant, 

GSV REF – mean GSV of reference ground plot data.

Results 

The ranges of %RMSE, %MAE, %BIAS and R2
adjusted values in each variant

were different,  according to  the  strength of  the  factor  determining the given
variant (either sample plot size and/or number of sample plots). For example; for
25 samples in 1000 iterations 99% of R2

adjusted values varied from -0.12 to 0.45
for 100 m2 sample plots, and from 0.08 up to 0.74 for 500 m2 plots. For 800
samples in 100 iterations corresponding R2

adjusted values varied from 0.471 to
0.472 for 100 m2 sample plots, and from 0.749 to 0.750 for 500 m2 plots.
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Fig. 3. Distribution of values for %BIAS (A), %RMSE (B) and R2
adjusted (C) for 100 

and 500 m2 sample plot size variants, for altering number of sample plots. Whiskers
present range of obtained results as percentiles: 1-99%, squares presents medians 
from all iterations

The selected results are presented below (fig. 3). From the figures mentioned
and the above quoted numbers, it is evident that the sample plot size affects the
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ranges of possible cases (including extreme results) a lot more than the number
of sample plots.

The highest values of %BIAS (fig. 4), %RMSE (fig. 5), %MAE (fig. 6) and
the  smallest  values  of  R2

adjusted (fig.  7)  were  found in  the  smallest  analysed
sample  plot  size  variants.  The  area  of  the  sample  plot  limits  the  possible
accuracy, regardless of the number of sample plots used to calibrate the model. 

For all variants for which the number of sample plots equaled 100 or more
and sample plots were at least 200 m2, median %BIAS values were in the range
of ±1% of the mean ground GSV value. For the 100 m2 sample plot size this was
also true, but the number of samples used for model calibration had to be at least
400-500.

Fig. 4. Distribution of %BIAS values (medians of all iterations) according to sample
plot size and number of sample plots

Regardless  of  the  number  of  sample  plots,  the  relative  RMSE  values
increased  with  a  decreasing  sample  plot  size.  The  number  of  sample  plots
influenced the values of %RMSE only in the range of 25-200 samples, where
%RMSE was higher in each sample plot size variant (fig. 3B, fig. 5) than at the
300-900 sample plots levels, where %RMSE maintained a practically constant
level.  The  highest  difference  was  noticed  in  the  25  sample  variant,  where
%RMSE was in the range of 21.23-40.04% for 500 m2, and 49.17-70.29% for
100  m2 sample  plot  sizes.  The  smallest  differences  were  noted  for  the  800
sample  plot  variant,  where  %RMSE was  in  the  range  of  20.88-20.91%  for
500 m2,  and 48.32-48.40% for 100 m2 sample plot  size.  In the above quoted
values, there were the1st (lower bound) and the 99th (upper bound) percentiles of
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obtained errors from all iterations in the given variant of analysis. The change of
sample plot size from 500 to 100 m2 caused %RMSE growth of about 30%.

The reduction of the number of sample plots per size variant from 900 to 25
enlarged the median error from 50% to 57% at 100 m2, and from 21% to 27% at
500 m2 sample plot size (fig. 5, fig. 8).

Fig.  5.  Distribution  of  %RMSE values  (medians  of  all  iterations)  according  to
sample plot size and number of sample plots

The  trend  of  the  %MAE distribution  was  fairly  similar  to  the  %RMSE
distribution (fig. 5-6), i.e. apart from the 300 sample plots where we can observe
a slight collapse, recorded errors were maintained at a very similar level (nearly
straight  trend  lines).  These  lines  show a  deflection  only below the  300-400
sample plots used for model calibration. Similar patterns were observed for the
%MAE error distribution, where the number of sample plots only affected the
values of %MAE in the range of the 25-300 plots.  Enlarging the number of
sample plots  did not  change the  %MAE (and %RMSE)  values.  The  highest
difference was noted for the 25 sample plots variant, where %MAE values were
in the range of 14.66-29.95% for 500 m2, and 31.38-48.28% for 100 m2. The
smallest differences were noted for the 800 sample plots variant, where %MAE
values were in the range of 14.35-14.44% for 500 m2,  and 31.12-31.53% for
sample plots  of  100 m2 size.  %MAE values  had a similar  trend to %RMSE
values; however, they were generally about 30% lower than %RMSE (fig. 5-6).
Moreover,  the  differences  between %RMSE and %MAE indicated that  there
were some extreme values in the obtained results.

The R2
adjusted values for each variant of the number of sample plots stabilized

around 300-400 sample plots. Even for the 100 sample plots variant, the final
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median value was very similar to the full variant, i.e. 900 sample plots (fig. 3C,
fig. 7).

Fig. 6. Distribution of %MAE values (medians of all iterations) according to sample
plot size and number of sample plots

Table  3.  Distribution  of  R2
adjusted ranges  according  to  the  analyzed  variants.

The range considered the difference between the highest and the lowest R2
adjusted

values among all iterations (repetitions) for given variants of analysis 

n_samples n_iter 100 m2 200 m2 300 m2 400 m2 500 m2

  25 1000 0.46 0.54 0.62 0.61 0.70

  50   900 0.37 0.23 0.16 0.16 0.19

100   800 0.15 0.09 0.10 0.06 0.08

200   700 0.05 0.04 0.03 0.02 0.02

300   600 0.03 0.02 0.02 0.01 0.01

400   500 0.03 0.01 0.01 0.01 0.01

500   400 0.01 0.01 0.01 0.01 0.00

600   300 0.01 0.01 0.01 0.00 0.00

700   200 0.00 0.00 0.00 0.00 0.00

800   100 0.00 0.00 0.00 0.00 0.00
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Fig.  7.  Distribution  of  R2
adjusted values  (medians  of  all  iterations)  according  to

sample plot size and number of sample plots

Fig. 8. Distribution of received %RMSE values according to all sample plot sizes
and selected variants of sample plot number
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Fig.  9. Distribution of received R2
adjusted values according to all sample plot sizes

and selected variants of sample plot number

On the basis of table 3, it could be said that the R2
adjusted ranges decrease with the

number of sample plots used for model calibration. Approximately, in up to 300-
400 sample plots, the range of obtained  R2

adjusted values between the best and
worst score did not exceed 1%. Higher differences were observed below that
number  of  sample  plots.  With  respect  to  sample  plot  size,  broader  R2

adjusted

ranges were observed for smaller sample plots. In some instances, the obtained
ranges were lower for smaller sample plot size. This was probably connected
with a shift  in both minimal and maximal R2

adjusted values among subsequent
variants of analysis.  This means that for 25 sample plots of 500 m2 size, the
range between min and max R2

adjusted
 was much broader than for 25 sample plots

of 100 m2. Apart from the broader range, the maximum value of R2
adjusted was

also higher for 25 sample plots of 500 m2, and there were more scores (sampling
results) observed in the higher interval of R2

adjusted values (fig. 3C, table 3).

Discussion and conclusions 

The  modeling  results  contain  all  kinds  of  errors:  starting  from  the  field
measurements and ALS data acquisition, through to the series of different data
processing  steps,  up  to  all  the  errors  related  to  statistical  modelling.  Using
a linear regression model,  we noted that a relatively small number of sample
plots was enough to stabilize the relationship between ALS metrics and growing
stock volume at the sample level. In the presented study, about 300-400 sample
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plots were enough to keep %BIAS, %RMSE, %MAE and R2
adjusted at relatively

similar levels to the higher numbers of sample plots. Furthermore, starting from
about 300-400 sample plots, the effect of a single sampling should not be of
great importance, as the range of obtained errors (precision) was very close to
the median error value providing that the applied sample plot selection method
covers the whole distribution of sampled stand ages and GSVs. Regarding the
issues  connected  with  sample  plot  size,  one  can  state  that  the  increase  in
a sample plot size (up to a certain area) leads to a better accuracy of ALS based
GSV. Such a statement is true at least at the level of sample plot and for the
investigated study area.

Since only one form of the model was used, other possible sources of errors
were excluded. However, it  is possible that suboptimal models were used for
some variants of analysis.  Nevertheless,  the obtained accuracy of the general
model introduced in this paper was comparable with other studies, which have
been mainly carried out  in Nordic countries [Næsset  1997;  Holmgreen et  al.
2003; Kallio et al. 2010; Maltamo et al. 2016].

The  selection  of  sample  plots  in  this  study  almost  fully  represents  the
possible variability in plot GSV values of populations. It is clear that regression
models enable the extrapolation of the modelled variable. Since all the sample
plots per variant were available to be selected for model calibration,  multiple
sampling provided information on the model variation. The results show a very
narrow range of received  %BIAS,  %RMSE, %MAE and  R2

adjusted values  for
variants above 200 sample plots (fig. 3). It is in agreement with the findings of
Gobakken and Næsset [2008]  who claim that  the  average standard deviation
increases when the number of sample plots is reduced. Furthermore, it means
that  in general,  the modelling procedure was stable  and extreme errors  were
presented in only a small percentage of cases.

Our results confirm that there is a strong relationship between the size of the
sample  plots  and  the  accuracy  of  GSV prediction  at  the  sample  plot  level
[Gobakken and Næsset 2008; Frazer et al. 2011; Ruiz et al. 2014]. However, in
the presented case we utilized a much higher number of available sample plots,
(900)  compared  to  earlier  studies.  We  were  able  to  capture  any trends  that
depended on the number of samples used in modelling. We noticed that below
the quantity of about 200-300 sample plots, a downtrend of modelling results
(R2

adjusted)  accelerate.  Thus,  it  is  possible  to  indicate  a  minimum number  of
sample  plots  that  guarantees  the  best  possible  accuracy  and  precision,  for
a specified sample plot size.  This is  in agreement with the previous study of
Kallio et al. [2010]. 

The strongest effect on ALS based GSV estimation accuracy comes from the
sample plot size. From a practical perspective, there is a specified (maximum)
accuracy limit, which is related to the number of sample plots. There is an easily
visible pattern on all presented graphs in this paper, where each sample plot size
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variant reaches its best %BIAS, %RMSE, %MAE and R2
adjusted values at around

300-400 (or more) sample plots, and does not change significantly with higher
numbers of sample plots. There is no need to collect more field data because we
do not expect to improve the model used in the study. Our results could possibly
reduce the cost of field inventory campaigns [Ruiz et al. 2014]. The reduction by
half of field work costs,  compensates for the costs of ALS data acquisition and
data processing. 

Future  investigations  should  include  similar  analyses,  based  on  other
modelling methods and other possible ALS metrics derived from canopy height
models  (CHM)  or  individual  tree  detection  (ITD)  results.  Additionally,
artificially reduced point clouds densities or alternative ways of calculating ALS
metrics [Hayashi et al. 2015] should be evaluated. Going forward, the obtained
results  could also be analysed separately for specific species,  age and/or site
classes in different locations, in order to check which stands cause the highest
errors, and/or to develop site-independent ALS data based models for predicting
not  only  GSVs  values,  but  also  estimating  different  (single)  forest  stand
characteristics.
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