
Colloquium Biometricum 41 
2011, 165–174 

STATISTICAL PROPERTIES OF SOME SUPPLEMENTED 
SPLIT–SPLIT–PLOT DESIGN 

Katarzyna Ambro Ŝy, Iwona Mejza 

Department of Mathematical and Statistical Methods 
Poznań University of Life Sciences 

 Wojska Polskiego 28, 60–637 Poznań , Poland 
e–mail: ambrozy@up.poznan.pl; imejza@up.poznan.pl 

Summary 

Main purpose of the paper is to provide a new method of the construction of non–orthogonal 
split–split–plot design for three or more factor experiments.  An orthogonally supplemented PEB 
block design with at most (m + 1) – classes of efficiency generates a new layout. Attention is paid 
to optimal statistical properties with respect to the efficiency of estimation of some group of the 
contrasts in the resulting design. 
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1. Introduction 

In agricultural research the traditional (complete) split–split–plot (SSP) 
design on RCB design is commonly used to a three–factor experiment. It is an 
extension of a split–plot design to accommodate a third factor (e.g. Gomez and 
Gomez, 1984, Section 4.3). The SSP arrangement is characterized as follows: 
− three plot sizes corresponding to the three factors, it means the first factor 

(say, A) is assigned to the whole plots, the second factor (say, B) to the 
subplots, and the third factor (say, C) to the sub–subplots.  
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− there are three levels of precision with the factor C receiving the highest 
precision. 

Such experiments are usually large which is not desirable in practice because of 
their high cost and complexity. Also, frequently limited amount of the 
experimental material does not allow using a complete SSP design. Hence, it is 
worth considering some incomplete SSP designs with respect to at least one of 
three factors (e.g. Mejza 1997a, 1997b).  

In the paper we consider a situation when the incomplete SSP design is 
orthogonally supplemented by a new group of sub–subplot treatments (called 
control sub–subplot treatments).  

The supplemented (augmented) block designs for one–factor experiments 
are described in the literature (e.g. Caliński 1971, Caliński and Ceranka 1974, 
Singh and Dey 1979, Puri et al. 1977, Kachlicka and Mejza 1998, Caliński and 
Kageyama 2003, Sections 6.3. and 10.3.3). Generally, two sets of treatments 
exist in all the above designs. Usually one set is referred to as the set of basic 
(test) treatments and the other – the set of supplementary (control) treatments. 
The major aim of such experiments is the comparison of both sets of treatments 
and the treatments inside those sets. 

 In the paper we present a randomization model, statistical properties and 
their consequences for an analysis of the resulting design.  

2. Material structure 

There is assumed the experimental material can be divided into b blocks 
with k1 whole plots. Then, each whole plot is divided into k2 subplots with k3 
sub–subplots. The s levels of factor A (whole plot treatments) are randomly 
allotted to the whole plots within each block, t levels of factor B (subplot 
treatments) are randomly allotted to the subplots within each whole plot, and the 
w levels of factor C (sub–subplot treatments) are randomly allotted to the sub–
subplots within each subplot. Hence, the third factor C is in a split–plot relation 
to the whole plot and subplot treatment combinations (i.e. combinations of the 
levels of factor A and factor B which are also in a split–plot design).  

3. Linear model 

As a result of certain assumptions and performed four randomization 
processes in the experiment the mixed linear model of vector y of n 

)( 321 kkbk=  observations has the form: 
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=
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1f
ff ητ ,  (3.1) 

and the following properties: 

 τy ∆∆∆∆′=)E(    neff
f

f IDVDy 2
4

1

)( σ+′=∑
=

Cov ,     (3.2) 

where ∆∆∆∆′  is a known design matrix for stwv =  treatment combinations,  

τ  (v × 1) is the vector of fixed treatment combination effects, '
1D , '

2D , '
3D , 

'
4D  are respectively, (n × b), (n × bk1), (n × bk1k2), (n × bk1k2k3) – design 

matrices for blocks, the whole plots (within the blocks), the subplots (within the 
whole plots inside the blocks), and  the sub–subplots (within the subplots inside 
the whole plots and blocks). They are expressed by:  

3211 kkkb 111ID ⊗⊗⊗=′ ,    
3212 kkkb 11IID ⊗⊗⊗=′ , 

3213 kkkb 1IIID ⊗⊗⊗=′ ,      nkkkb IIIIID =⊗⊗⊗=′
3214 , 

where xI  is the identity matrix of order x, x1  is the x–dimensional vector of 

ones, xxx '11J = , and ⊗ denotes Kronecker product of matrices.  

The fη  (f = 1, 2, 3, 4) are, respectively, random effect vectors of the blocks, the 

whole plots, the subplots, the sub–subplots with E 0η =)( f , and 

ff Vη =)(Cov , 0ηη =′ ),(Cov ff  for all  f ≠ f’ .  If 2
σ f  (f = 1, 2, 3, 4) 

define variances of the variables fη , then 
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11 bb b JIV −−= ,              )(σ
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1

2
22 kkb JIIV −−⊗= k ,  (3.3) 
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2
44 kkkbk k JIIV −−⊗=  . 

According to the assumed orthogonal block structure of the considered SSP 

design, the covariance matrix (3.2) can be written as ∑
=

=
4

0f
ff Py γ)Cov( , where 



168 KATARZYNA AMBRO śY, IWONA MEJZA 

 

0≥fγ  and the fP  matrices form a complete known binary set of matrices 

defining strata of the blocking structure of the design (cf. Mejza, 1997a). More, 
the range space }{ fPℜ of fP , f = 0, 1, 2, 3, 4 is termed the f–th stratum of the 

model, and }{ fγ  are unknown stratum variances (cf. Houtman and Speed, 

1983). 
In the SSP model there are five strata, i.e. the total area stratum (zero 

stratum), the inter–block stratum (the first stratum), the inter–whole plot stratum 
(the second stratum), the inter–subplot stratum (the third stratum) and the inter–
sub–subplot stratum (the fourth stratum). 

The orthogonal block structure of the considered design allows one to apply 
Nelder's approach to the analysis of variance for the multistratum experiments 
(Nelder 1965a, 1965b). The stratum analyses are expressed in terms of basic 
contrasts introduced by Pearce et al. (1974). They are generated by  

δr – orthonormal eigenvectors of stratum information matrices for the treatment 

combinations, ∆′∆= ff PA , where ][diag 21 vr...,,r,r=δr  and hr  denotes 

replicate of the h –th treatment combination, f = 0, 1, 2, 3, 4; vh ,...,2,1= . 

General forms of the fA  for the incomplete and complete SSP experiment 

designs are given in Mejza (1997a). Their forms appropriate for the considered 
SSP design one can find in section 4. In the paper we assume that SSP design is 
generally balanced (cf. Houtman and Speed, 1983). General balance (GB) 
property occurs when all matrices fA  fulfill the following criterion (e.g. 

Mejza, 1992): 

 f
δ

fff ArAArA −
′′

δ− = , (3.4) 

for 4,3,2,1, =′ff , ff ′≠  and ]111[ 21 v/r,...,/r,/rdiag=δ−r .  

The GB property allows finding common set of δr – orthonormal 
eigenvectors for all the information matrices fA . Eigenvalues, say fhε , 

corresponding to the eigenvectors of the matrices fA  with respect to δr  are 

called stratum efficiency factors. They satisfy the following relations: 

10 ≤ε≤ fh  ,          0),ε1,(ε 00 ==∀
<

hv
vh

        ∑
=

=
4

1

1ε
f

fh , 

for  vh < ;  4,...,1,0=f ;     vh ,...,2,1= . 
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4. Construction method 

In this chapter some method of constructing the incomplete SSP design 
( sk =1 , tk =2 , wk <3 ) is described, along with some statistical properties, 

mainly those related to the efficiency factors of the design for estimating the 
corresponding basic contrasts in the stratum analyses. 

This method is based on the Kronecker product of three designs, in which 
the levels of three factors (A, B, C) are assigned. Consider situation when the 
whole plot (A) treatments and the subplot (B) treatments are in appropriate RCB 
designs whereas the sub–subplot treatments (C) occur in a supplemented block 

design ∗d ( wv =∗ , ∗b , ∗k , ∗r ), where the parameters ∗v , ∗b , ∗k  mean 
numbers of the sub–subplot treatments, blocks, units inside each block in the 

subdesign ∗d , respectively and ∗r  denotes a vector of replicates of the sub–
subplot treatments. 

We assume the sub–subplot (C) treatments consist of two groups: 

21 www += , where 1w  test (basic) C  treatments are allocated in a subdesign 

1

~
d  which is a partially efficiency balanced (PEB) design with at most m 
efficiency classes (cf. Puri et al. 1977, Kageyama and Puri 1985, Caliński and 
Kageyama 2000, Definition 4.3.1.) while 2w  additional (control) C  treatments 

– in a subdesign 2
~
d  represented by an orthogonal block design (cf. Caliński and 

Kageyama, 2000, Definitions 2.2.7–2.2.8).  

Let 1

~
N  be the 11 bw ×  incidence matrix of the subdesign 1

~
d  with 

parameters 1w , 1b , 1

~
k , ,

1wr  jε , jρ  (∑
=

−=ρ
m

j

j
w

1
11 ). Then (cf. Puri and 

Nigam 1977, Nigam and Puri 1982, Caliński and Kageyama 2003, e.g. 
Theorems 6.3.1. and 10.3.3.):  

 








′
= ∗ */)(

~

2

1
* nw

d kr

N
N ,   (4.1) 

is the incidence matrix of the PEB design with at most (m + 1)–classes of 
efficiency with parameters: 

21 wwwv +==∗ ,  1bb =∗ ,  11
~/

~
1

nkn b1k ∗∗ = ,  
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 ],[
21

′′′== ∗
∗

wwd
rr1Nr ,  1*

0 =ε , 2
*
0 w=ρ ,   (4.2) 

jj ρ=ρ* ,   j = 1, 2, ..., m, ` 

where 1
~n  and *n  denote numbers of observations in design 1

~
d  and ∗d , 

respectively. 
Let =1N ∗⊗

dst N1  be the bv×  incidence matrix of the considered SSP 

design with parameters )( 21 wwstv += , ∗= bb ,  ∗= stkk ,  ∗⊗= r1r st , 
∗= bstkn , where ∗d

N  is given in (4.1). This method of the construction yields 

proper (cf. Caliński and Kageyama, 2000, Definition 2.2.2) and non–
equireplicated experiment SSP design (cf. Caliński and Kageyama, 2000, 
Definition 2.2.3).  

As mentioned in section 3 statistical properties of the design are related 
mainly to algebraic properties of the stratum information matrices fA , which 

forms in this case are following:   

 101 CCA −= ,  212 CCA −= ,  323 CCA −= ,  34 CA = ,  (4.3) 

where, assuming  )...,,,()( 21
∗∗∗=δ∗
wrrrdiagr  and ∗r  given in (4.2), 
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It is easy to check that resulting SSP design is generally balanced. It follows 
from that fact the matrices (4.3) with (4.4) fulfill the condition (3.4), i.e. they 
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commute with respect to δ−∗δ− ⊗= )(rIr st . Finally one can find a set of the 

contrasts and corresponding to them stratum efficiency factors (cf. Mejza, 
1997a). We consider the following types of the contrasts: among main effects of 
the whole plot treatments (A), the subplot treatments (B) and the sub–subplot 

(C) treatments, including: test C  treatments ( TC ) and additional (control) C  

treatments ( CC ), between the test group and the control group of C  treatments 

( TC vs. CC ), and other interaction contrasts as in table 1. 
Analyzing algebraic properties of the matrices (4.3)–(4.4) we obtain 

information about estimability of the contrasts in the strata and their stratum 
efficiency factors fhε  (cf. Section 3). The fhε  , vh < ; 4,3,2,1=f , in table 

1 are expressed by the eigenvalues (4.2), according to the construction method. 

Table 1.  Stratum efficiency factors of the considered non–orthogonal SSP design 

Strata Types of 
contrasts 

Df 
1 2 3 4 

A 1−s   1   

B 1−t    1  

TC  11

*

*
1

−=








ρ

ρ
w

m

L  

∗

∗

ε−

ε−

m1

1 1

L    
∗

∗

ε

ε

m

L

1

 

CC  12 −w     1*
0 =ε  

CT CvsC  1    1*
0 =ε  

A × B )1)(1( −− ts     1 

A × TC  =








ρ−

ρ−

*

*
1

)1(

)1(

ms

s

L  ( 1−s )( 11 −w )  
∗

∗

ε−

ε−

m1

1 1

L   
∗

∗

ε

ε

m

L

1

 

A × CC  ( 1−s )( 12 −w )    1*
0 =ε  

A × 

( )CT CvsC  
1−s     1*

0 =ε  

B × TC  =








ρ−

ρ−

*

*
1

)1(

)1(

mt

t

L  ( 1−t )( 11 −w )   
∗

∗

ε−

ε−

m1

1 1

L  

∗

∗

ε

ε

m

L

1
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Strata Types of 
contrasts Df 

1 2 3 4 

B × CC  ( 1−t )( 12 −w )    1*
0 =ε  

B ×  

( )CT CvsC  
1−t     1*

0 =ε  

A × B × TC

)1)(1)(1(

)1)(1(

)1)(1(

1

*

*
1

−−−=

=








ρ−−

ρ−−

wts

ts

ts

m

L                                                        
∗

∗

ε−

ε−

m1

1 1

L  
∗

∗

ε

ε

m

L

1

 

A × B × 
CC  

)1)(1)(1( 2 −−− wts     1*
0 =ε  

A × B × 

( )CT CvsC  
)1)(1( −− ts     1*

0 =ε  

Df (degrees of freedom) – numbers of the particular types of the contrasts estimable in the strata; 
1 – the inter–block stratum, 2 – the inter–whole plot stratum, 3 – the inter–subplot stratum,         
4 – the inter–sub–subplot stratum  

5. Some remarks 

In conclusion it can be seen that in the generated SSP design a part of the 
basic contrasts is estimated with full efficiency (= 1). This stratum orthogonality 
of the design is due to two facts. One of them is connected with the construction 
method, i.e. for the comparisons among main effects of the whole plot 
treatments (A), among main effects of the subplot treatments (B) and the 
interaction contrasts (A × B). The second kind of the stratum orthogonality is 
linked with the generating design used (orthogonally supplemented block 
design), i.e. for the comparisons among main effects of the control sub–subplot 

treatments ( CC ), the interaction contrasts such as CT CvsC . , CCA× , 

).( CT CvsCA× , CCB× , ).( CT CvsCB× , CCBA ×× , ).( CT CvsCBA ×× . 
Other contrasts are estimated with not full efficiency in two different strata. It is 

worth noting that number of efficiency classes of the subdesign 1
~
d  (and the 

generated SSP design also) can be reduced when we choose the PEB design 
with m–efficiency classes from the class of the PBIB designs (Mejza 1997a, 
1997b). In the statistical inference about those contrasts we can use information 
about them separately from one stratum only or performing for them the 
combined estimation and testing based on information from these strata in 
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which they are estimable (e.g. Caliński and Kageyama, 2000, Sections 3.7–3.8, 
5.5). Some combining methods of information from two strata are described in 
AmbroŜy and Mejza (2006, Sections 4.4, 5.4) also. 
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