PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 2 |

Tytuł artykułu

VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Abscisic acid (ABA) plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine), and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box) in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

2

Opis fizyczny

Article 3546 [14p.],fig.,ref.

Twórcy

autor
  • Shandong Key Laboratory of Plant Biotechnology, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
autor
  • Shandong Key Laboratory of Plant Biotechnology, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
autor
  • Shandong Key Laboratory of Plant Biotechnology, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
autor
  • Shandong Key Laboratory of Plant Biotechnology, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
autor
  • Shandong Key Laboratory of Plant Biotechnology, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China

Bibliografia

  • 1. Taiz L, Zeiger E. Abscisic Acid: a seed maturation and antistress signal. In: Taiz L, Zeiger E, editors. Plant physiology. 4th ed. Sunderland: Sinauer Associates; 2006. p. 593–616.
  • 2. Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol. 1988;39(4):439–473. https://doi.org/10.1146/annurev.pp.39.060188.002255
  • 3. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996;15(10):2331–2342.
  • 4. Audran C, Liotenberg S, Gonneau M, North H, Frey A, Tap-Waksman K, et al. Localization and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust J Plant Physiol. 2001;28(12):1161– 1173.
  • 5. Qin X. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA. 1999;96(26):15354– 15361. https://doi.org/10.1073/pnas.96.26.15354
  • 6. Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 2000;123(2):553–562. https://doi.org/10.1104/pp.123.2.553
  • 7. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27(4):325–333. https://doi.org/10.1046/j.1365-313x.2001.01096.x
  • 8. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14(11):2723–2743. https://doi.org/10.1105/tpc.006494
  • 9. Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, et al. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 2002;14(8):1833–1846. https://doi.org/10.1105/tpc.002477
  • 10. Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, et al. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 2000;23(4):481–488. https://doi.org/10.1046/j.1365-313x.2000.00812.x
  • 11. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. Embo J. 2004;23(7):1647–1656. https://doi.org/10.1038/sj.emboj.7600121
  • 12. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134(4):1439–1449. https://doi.org/10.1104/pp.103.037614
  • 13. Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller- Roeber B. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 2010;38:822–827. https://doi.org/10.1093/nar/gkp805
  • 14. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. Embo J. 1999;18(17):4689–4699. https://doi.org/10.1093/emboj/18.17.4689
  • 15. Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell. 2001;13(7):1527–1540. https://doi.org/10.1105/tpc.13.7.1527
  • 16. Xiao J, Cheng T, Li X, Xiao J, Xu C, Wang S. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol. 2013;163(4):1868–1882. https://doi.org/10.1104/pp.113.226019
  • 17. Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15(5):247–258. https://doi.org/10.1016/j.tplants.2010.02.006
  • 18. Yan H, Jia H, Chen X, Hao L, An H, Guo X. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol. 2014;55(12):2060. https://doi.org/10.1093/pcp/pcu133
  • 19. Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife. 2015;4(e07295). https://doi.org/10.7554/eLife.07295
  • 20. Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, et al. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot. 2007;58(8):1999– 2010. https://doi.org/10.1093/jxb/erm062
  • 21. Marchive C, Leon C, Kappel C, Coutos Thevenot P, Corio Costet MF, Delrot S, et al. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS One 2013;8(1):e54185. https://doi.org/10.1371/journal.pone.0054185
  • 22. Merz RP, Moser T, Holl J, Kortekamp A, Buchholz G, Zyprian E, et al. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiol Plant. 2014;153(3):365–380. https://doi.org/10.1111/ppl.12251
  • 23. Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio Costet MF, et al. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant. 2007;131(3):434–447. https://doi.org/10.1111/j.1399-3054.2007.00975.x
  • 24. Liu H, Yang W, Liu D, Han Y, Zhang A, Li S. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep. 2011;38(1):417–427. https://doi.org/10.1007/s11033-010-0124-0
  • 25. Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta. 2010;232(6):1325–1337. https://doi.org/10.1007/s00425-010-1258-y
  • 26. Zhu Z, Shi J, Cao J, He M, Wang Y. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Rep. 2012;31(11):2109–2120. https://doi.org/10.1007/s00299-012-1321-1
  • 27. Ma Q, Zhang G, Hou L, Wang W, Hao J, Liu X. Vitis vinifera VvWRKY13 is an ethylene biosynthesis-related transcription factor. Plant Cell Rep. 2015;34(9):1593–1603. https://doi.org/10.1007/s00299-015-1811-z
  • 28. Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep. 2008;27(6):1053– 1063. https://doi.org/10.1007/s00299-008-0531-z
  • 29. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1988;6(13):3901–3907.
  • 30. Ross ARS, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, et al. Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem. 2004;329(2):324–333. https://doi.org/10.1016/j.ab.2004.02.026
  • 31. Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot. 2006;57(3):581–588. https://doi.org/10.1093/jxb/erj045
  • 32. Burssens S, de Almeida Engler J, Beeckman T, Richard C, Shaul O, Ferreira P, et al. Developmental expression of the Arabidopsis thaliana CycA2;1 gene. Planta. 2000;211(5):623–631. https://doi.org/10.1007/s004250000333
  • 33. Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, et al. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol (Stuttg). 2010;12(4):604–614. https://doi.org/10.1111/j.1438-8677.2009.00248.x
  • 34. Lavenus J, Goh T, Guyomarch S, Hill K, Lucas M, Voß U, et al. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. Plant Cell. 2015;27(5):1368–1388. https://doi.org/10.1105/tpc.114.132993
  • 35. Weaver LM, Gan S, Quirino B, Amasino RM. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol. 1998;37(3):455–469. https://doi.org/10.1023/A:1005934428906
  • 36. Zhang K, Gan SS. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol. 2012;158(2):961–969. https://doi.org/10.1104/pp.111.190876
  • 37. de Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 2003;33(3):543–555. https://doi.org/10.1046/j.1365-313X.2003.01652.x
  • 38. Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PM, et al. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell. 2013;25(6):2132–2154. https://doi.org/10.1105/tpc.113.112896
  • 39. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, et al. Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot. 2004;55(407):2343–2351. https://doi.org/10.1093/jxb/erh276
  • 40. Kim S, Kang JY, Cho DI, Park JH, Kim SY. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 2004;40(1):75–87. https://doi.org/10.1111/j.1365-313X.2004.02192.x
  • 41. Deak KI, Malamy J. Osmotic regulation of root system architecture. Plant J. 2005;43(1):17–28. https://doi.org/10.1111/j.1365-313X.2005.02425.x
  • 42. Lukowitz W, Gillmor CS, Scheible WR. Positional cloning in Arabidopsis: why it feels good to have a genome initiative working for you. Plant Physiol. 2000;123(3):795–805. https://doi.org/10.1104/pp.123.3.795
  • 43. Xiao L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, et al. Modulation of abscisic acid signal transduction and biosynthesis by Sm-like protein in Arabidopsis. Dev Cell. 2001;1(6):771–781. https://doi.org/10.1016/S1534-5807(01)00087-9
  • 44. Signora L, de Smet I, Foyer CH, Zhang H. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J. 2001;28(6):655– 662. https://doi.org/10.1046/j.1365-313x.2001.01185.x
  • 45. Leon P, Sheen J. Sugar and hormone connections. Trends Plant Sci. 2003;8(3):110–116. https://doi.org/10.1016/S1360-1385(03)00011-6

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-500161a7-db2a-41cb-a0ec-36490c1bbe56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.