PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 163 | 05 |

Tytuł artykułu

Specjacja fosforu w leśnych glebach rdzawych na obszarach popożarowych

Treść / Zawartość

Warianty tytułu

EN
Phosphorus fractionation in forest Brunic Arenosols of post-fire areas

Języki publikacji

PL

Abstrakty

EN
The studies on contents and profile distribution of total phosphorus and its fractions extracted according to the procedure of Hedley et al. [1982] in a modification of O’Halloran et al. [1987] in forest Brunic Arenosols of post−fire areas in the Rudy Raciborskie Forest District (S Poland) were undertaken. Five soil profiles developed from fluvioglacial sandy deposits of the Oder Glaciation were described and sampled 21 years after the fire occurrence and analyzed using standard procedures. Total content of the element was among typical for Brunic Arenosols of Poland, ranging from 683.1 to 880.4 mg/kg in Ofh horizons, from 154.2 to 566.5 mg/kg in mineral horizons affected by soil−forming processes and from 115.5 to 384.2 mg/kg in parent material. The content of distinguished phosphorus fractions varied, reflecting the effect of environmental factors and brunification soil−forming process. Residual fraction predominated in parent material, organic in O and most of A−horizons and bounded to sesquioxides in B−horizons. The observed proportions between residual fraction and sum of the remaining fractions were typical for soils of old−glacial areas, reflecting considerable degree of mineral substrate weathering. An effect of fire was not clear due to the lack of a reference soil. However, the studied soils showed some specific features, that can be explained by the influence of fire. Low content of fraction bounded to calcium and apatites is the first and elevated concentration of fraction bounded to sesquioxides in parent material is the other one. Profile distribution patterns of mentioned above fractions suggest leaching of phosphorus labile forms and their stabilization in deeper parts of the studied soils. This process could be initialized or accelerated by fire. Finally, it can be concluded, that studied properties of the contemporary soils are stronger influenced by pine forest vegetation than by fire before 21 years.

Wydawca

-

Czasopismo

Rocznik

Tom

163

Numer

05

Opis fizyczny

s.398-406,rys.,tab.,bibliogr.

Twórcy

autor
  • Katedra Nauk o Środowisku Glebowym, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Achat D. L., Bakker M. R., Augusto L., Derrien D., Gallegos N., Lashchinskiy N., Milin S., Nikitich P., Raudina T., Rusalimova O., Zeller B., Barsukov P. 2013. Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties. Biogeosciences 10: 733-752.
  • Almendros G., Gonzales-Vila F. J., Martin F. 1990. Fire induced transformation of soil organic matter from an oak forest on experimental approach to the effects of the fire on humic substances. Soil Science 149 (3): 158-168.
  • Arocena J. M., Opio C. 2003. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113: 1-16.
  • Augusto L., Bonnaud P., Ranger J. 1998. Impact of forest tree species on soil acidification. Forest Ecology and Management 105: 67-78.
  • Bache B. W. 1964. Aluminium and iron phosphate studies relating to soils. II Reactions between phosphate and hydrous oxides. Journal of Soils Science 15 (1): 110-116.
  • Barrow N. J. 1984. Modelling the effects of pH on phosphate sorption by soils. Journal of Soil Science 35: 283-297.
  • Biernat S., Żero E. 1971. Szczegółowa mapa geologiczna Polski. Arkusz Kuźnia Raciborska. PIG, Warszawa
  • Borchard N., Ladd B., Eschemann S., Hegenberg D., Moseler B. M., Amelung W. 2014. Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 232-234: 236-242.
  • Borggaard O. K. 1983. The influence of iron oxides on phosphate adsorption by soil. Journal of Soil Science 34: 333-341.
  • Brożek S., Zwydak M. 2010. Atlas gleb leśnych Polski. CILP, Warszawa
  • Czępińska-Kamińska D. 1992. Wpływ procesów glebotwórczych na rozmieszczenie mineralnych związków fosforu w glebach. Wyd. SGGW, Warszawa.
  • Darke A. K., Walbridge M. R. 2000. Al and Fe biogeochemistry in a floodplain forest: Implications for P retention. Biogeochemistry 51: 1-32.
  • DeBano L. F. 2000. Water repellency in soils: a historical overview. Journal of Hydrology. 231-232: 4-32.
  • DeBano L. F., Neary D. G., Ffolliott P. F. 1998. Fire’s effect on ecosystems. Willey & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto.
  • Dziadowiec H. 2010. Wpływ pożaru lasu na właściwości gleb leśnych. W: Sewerniak P., Gonet S. S. [red.]. Środowi-skowe skutki pożaru lasu. PTSH, Wrocław. 7-26.
  • Fernandez I., Cabaneiro A., Corballas T. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil land comparison with laboratory soil heating. Soil Biology and Biochemistry 29 (1): 1-11.
  • Fernandez I., Cabaneiro A., Corballas T. 2001. Thermal resistance to high temperatures of different organic fractions from soils under pine forests. Geoderma 104: 281-298.
  • Gellatly A. F. 1985. Phosphate retention: Relative dating of Holocene soil development. Catena 12: 227-240.
  • Gonet S. S. 2010. Wpływ pożaru lasu na właściwości materii organicznej gleb. W: Sewerniak P., Gonet S. S. [red.]. Środo-wiskowe skutki pożaru lasu. PTSH, Wrocław. 51-82.
  • Grier C. C. 1975. Wildfire effects on nutrient distribution and leaching in a coniferous ecosystem. Canadian Journal of Forestry Research 5: 599-607.
  • Hedley M. J., Stewart J. W. B., Cauhan B. S. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and laboratory incubations. Soil Science Society of American Journal 46: 970-976.
  • Heydari M., Salehi A., Mahdavi A., Adibnejad M. 2012. Effects of different fire severity levels on soil chemical and physical properties in Zagros forests of western Iran. Folia Forestaria Polonica A 54 (4): 241-250.
  • Iglesias T., Cala V., Gonzalez J. 1997. Mineralogical and chemical modifications in soils affected by forest fire in the Mediterranean area. The Science of the Total Environment. 204: 89-96.
  • Jonczak J. 2015. Geneza, ewolucja i właściwości gleb dolin rzek źródłowych w młodoglacjalnych obszarach zastoisko-wych na przykładzie Leśnej, Równina Sławieńska. Wydawnictwo Naukowe AP w Słupsku, Słupsk.
  • Jonczak J., Šimanský V., Polláková N. 2015. Zawartość i profilowe rozmieszczenie frakcji fosforu w uprawnych i leś-nych czarnoziemach z poziomem cambic. Sylwan 159 (11): 931-939. DOI: https://doi.org/10.26202/sylwan.2015037.
  • Jonczak J., Sztabkowski K. 2017. Specjacja fosforu w leśnych glebach glejobielicowych terasy nadzalewowej Słupi. Sylwan 161 (9): 772-780. DOI: https://doi.org/10.26202/sylwan.2017056.
  • Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. 2009. Roczniki Gleboznawcze 60 (2): 5-17.
  • Kodama H., Schnitzer M. 1979. Effect of fulvic acid on the crystallization of Fe(III) oxides. Geoderma 19: 279-291.
  • Lair G. J., Zehetner F., Khan Z. K., Gerzabek M. H. 2009. Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma 149: 39-44.
  • Marion G. M., Moreno J. M., Oechel W. C. 1991. Fire severity, ash deposition, and clipping effects on soil nutrients in chaparral. Soil Science Society of America Journal. 55: 235-240.
  • Neary D. G., Klopatek C. C., DeBano L. F., Ffolliott P. F. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122: 51-71.
  • O’Halloran I. P., Steward J. W. B., Kachnoski R. G. 1987. Influence of texture and management practices on the forms and distribution of soil phosphorus. Canadian Journal of Soil Science 67: 147-163.
  • Okołowicz M., Czępińska-Kamińska D., Janowska E., Konecka-Betley K. 2003. Rozmieszczenie fosforu w glebach rezerwatu biosfery „Puszcza Kampinoska”. Roczniki Gleboznawcze 54 (3): 39-48.
  • Olejarski I. 2003. Wpływ zabiegów agrotechnicznych na niektóre właściwości gleb oraz stan upraw sosnowych na po-żarzyskach wielkoobszarowych. Prace IBL A: 1-77.
  • Pakuła K., Kalembasa D. 2008. Frakcje fosforu w leśnych glebach płowych Niziny Południowopodlaskiej. Roczniki Gleboznawcze 59 (1): 161-166.
  • Parzych A., Sobisz Z., Trojanowski J. 2010. Variability of nitrogen and phosphorus concentration and the net primary production Vaccinium vitis-idaea L. and Vaccinium myrtillus L. in chosen woodland ecosystems of the Słowiński National Park. Archives of Environmental Protection 36 (2): 91-104.
  • Pokojska U. 1979. Geochemiczne badania nad procesem bielicowania. Część III. Fosfor w procesie bielicowania. Roczniki Gleboznawcze 30 (2): 153-161.
  • Raison R. J., Khanna P. K. Woods P. V. 1985. Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research 15: 132-140.
  • Ryan K. C. 2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica 36 (1): 13-39.
  • Saharjo B. H., Munoz C. P. 2005. Controlled burning in peatlands owned by small farmers: a case study in land preparation. Wetlands Ecology and Management 13: 105-110.
  • Schaller J., Tischer A., Struyf E., Bremer M., Belmonte D. U., Potthast K. 2015. Fire enhances phosphorus availability in topsoils depending on binding properties. Ecology 96 (6): 1598-1606.
  • Schwertmann U. 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature 212: 645-646.
  • Soto B., Diaz-Fierros F. 1993. Interactions between plant ash leachates and soil. International Journal of Wildland Fire 3 (4): 207-216.
  • Thomas A. D., Walsh R. P. D., Shakesby R. A. 1999. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of Northern Portugal. Catena 36 (4): 283-302.
  • Trasar-Cepeda M. C., Gil-Sotres F., Guitian-Ojea F. 1990. Relation between phosphorus fractions and development of soils from Galicia (NW Spain). Geoderma 27: 139-150.
  • Turner B. L., Condron L. M., Richardson S. J., Peltzer D. A., Allison V. J. 2007. Soil organic phosphorus transformations during pedogenesis. Ecosystems 10: 1166-1188.
  • Venterink H. O. 2011. Does phosphorus limitation promote species-rich plant communities? Plant and Soil 345: 1-9.
  • Walker T. W., Syers J. K. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1-19.
  • Xiao X. I., Anderson D. W., Bettany J. R. 1991. The effect of pedogenetic processes on the distribution of phosphorus, calcium and magnesium in Gray Luvisols. Canadian Journal of Soil Science 7l: 397-410.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4fdbdb4b-598d-4759-8a2a-0ff05e5c27ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.