PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 06 |

Tytuł artykułu

Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The increase of the world’s population and the decrease of arable land due to abiotic stresses, especially salinity and heavy metals, are causing growing concerns over agricultural sustainability. The application of Plant Growth-Promoting Rhizobacteria (PGPR) is considered as a useful tool to reverse such environmental stressors. The aim of the study is to investigate the growth-promoting effects of a recently identified Algerian Sahara rhizobacterium Pseudomonas plecoglossicida strain Pp20 (Pp20) in the interaction with Zea mays cv DZ. This study also aims to assess the capacity of Pp20 to alleviate damages on maize roots caused by salt and aluminum. Our results revealed that this PGPR strain is producing the enzyme ACC deaminase, degrading the plant hormone ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). In addition, it produces and secretes small amounts of the plant growth-promoting hormone indole-3-acetic acid (IAA). Under greenhouse conditions, the inoculation with the PGPR induced growth stimulatory effects. Inoculation showed improvements on all of the growth parameters, particularly root fresh and dry biomass (increases up to 114% and 121%, respectively). The plant’s better performance was indicated also by increases in photosynthesis-associated parameters as chlorophyll and carbohydrate contents. Improvements of the root growth by PGPRs have been observed in the presence of 150 mM NaCl reaching up to 70% more in the length of the seminal roots and 270% increase in the number of lateral roots. In the presence of 90 µM AlCl₃, the root growth parameters due to the bacterial inoculants are even better. Increases in lengths of seminal roots and root dry mass by 231% and 93%, respectively, were found. Furthermore, we could show that Pp20 itself exhibited tolerance to high NaCl and AlCl₃ concentrations. Overall, these results highlight the potential of this new PGPR in the phytostimulation and the induction of abiotic stress resistance in economically relevant crop plant.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

06

Opis fizyczny

Article 91 [10p.], fig.,ref.

Twórcy

autor
  • Ecole Normale Superieure Assia Djebar, Constantine, Algeria
  • Laboratoire des Ressources Genetiques et Biotechnologies, ENSA, Algiers, Algeria
autor
  • Laboratoire d’Agrobiotechnologie et de Nutrition En Zones Semi‑arides, Universite Ibn-Khaldoun de Tiaret, 78 Zaaroura, 14000 Tiaret, Algeria
  • Laboratoire des Ressources Genetiques et Biotechnologies, ENSA, Algiers, Algeria
autor
  • Laboratoire des Ressources Genetiques et Biotechnologies, ENSA, Algiers, Algeria
autor
  • Laboratoire d’Ecobiologie Animale, Departement de Sciences Naturelles, Ecole Normale Superieure de Kouba, Vieux Kouba, Alger, Algeria
autor
  • IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
  • Institut fur Botanik, Technische Universitat Dresden, 01062 Dresden, Germany

Bibliografia

  • Alarcon MV, Lloret PG, Iglesias DJ, Talon M, Salguero J (2009) Response of maize seedling roots to changing ethylene concentrations. Russ J Plant Physiol 56:488–494
  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328
  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677
  • Clarkson DT (1965) The effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29(2):309–315
  • Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. PloS One 35:464. https://doi.org/10.1371/journal.pone.0047149
  • Dennert F, Imperiali N, Mavrodi D et al (2015) Rhizosphère 4. Global Soil Biodiversity Initiative, Maastricht, The Netherlands
  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149
  • FAO (2016) Situation alimentaire mondiale. http://www.fao.org/worldfoodsituation/csdb/fr/. Accessed 20 Aug 2016
  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50(338):1533–1540
  • Fu Q, Liu C, Ding N, Lin Y, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric Water Manag 97(12):1994–2000
  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1(1):51–81
  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39
  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68
  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17
  • Griffith WT (1975) Characterization of the terminal chlorophyllide synthesis in etioplast membrane preparation. Biochem J 152:623–635
  • Gurska J, Wang W, Gerhardt KE et al (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479
  • Han Y, Wang R, Yang Z et al (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128
  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598
  • Hedge JE, Hofreiter BT, Whistler RL (1962) Carbohydrate chemistry. Academic press, New York
  • Kaldorf M, Ludwig-Müller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67
  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: 4th international conference on plant pathogenic bacteria, Angrs, France
  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252
  • Kováčik J, Klejdus B, Hedbavny J (2010) Effect of aluminium uptake on physiology, phenols and amino acids in Matricaria chamomilla plants. J Hazard Mater 178(1–3):949–955
  • Kováčik J, Štork F, Klejdus B, Grúz J, Hedbavny J (2012) Effect of metabolic regulators on aluminium uptake and toxicity in Matricaria chamomilla plants. Plant Physiol Biochem 54:140–148
  • Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116
  • Li Z, Chang S, Lin L, Li Y, An Q (2011) A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett Appl Microbiol 53(2):178–185
  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556
  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53
  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572
  • Mulkey TJ, Kuzmanoff KM, Evans ML (1982) Promotion of growth and shift in the auxin dose/response relationship in maize roots treated with the ethylene biosynthesis inhibitors aminoethoxyvinylglycine and cobalt. Plant Sci Lett 25:43–48
  • Munns DN (1965) Soil acidity and growth of legume. II. Reaction of aluminium and phosphate in solution and effects of aluminium, phosphate, calcium, and pH on Medicago sativa L. and Trifolium subterraneum in solution culture. Aust J Agric Res 16:743–755
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309
  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283
  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic press, Elsivier
  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1 carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80
  • Pérez G, Garbossa G, Sassetti B, Di Risio C, Nesse A (1999) Interference of aluminium on iron metabolism in erythroleukaemia K562 cells. J Inorg Biochem 76:105–112
  • Pervaiz Z, Afzal M, Xiaoe Y, Ancheng L (2002) Selection criteria for salt tolerance in wheat cultivars at seedling stage. Asian J Plant Sci 1:85–87
  • Rahmoune B, Morsli A, Khelifi-Slaoui M et al (2017) Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. J Plant Interact 12:1–6
  • Reddy PP (2014) Plant growth promoting rhizobacteria for horticultural crop protection. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1973-6
  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709
  • Schlicht M, Ludwig-Müller J, Volkmann D, Urbach CB, Baluska F (2013) Indole-3-butyric acid induces lateral roots via nitric oxide generation by peroxisomes. New Phytol 200:473–482
  • Schüßler A, Martin A, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936
  • Shabala S, Cuin TA (2008) Potassium transport and plant salt t.olerance. Physiol Plant 133:651–669
  • Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082
  • Smith WH (2012) Air pollution and forests: interactions between air contaminants and forest ecosystems. Springer, Berlin
  • Stewart DW, Dwyer LM (1999) Mathematical characterization of leaf shape and area of maize hybrids. Crop Sci 39:422–427
  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76
  • van Loon LC, Glick BR (2004) Increased plant fitness by Rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Ecological studies (analysis and synthesis). Springer, Berlin, pp 177–205
  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144
  • Yeo AR, Izard P, Boursier PJ, Flowers TJ (1991) Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J Exp Bot 42:881–889
  • Zahir ZA, Arshad M, Frankenberger WT (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168
  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119
  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273
  • Zhang QC, Shamsi IH, Xu DT et al (2012) Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl Soil Ecol 57:1–8
  • Zörb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4fdb8592-2e94-4bfa-8be6-1d6c73061f6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.