Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 18 | 5 |

Tytuł artykułu

Possibility of achieving organic yields for medicinal and aromatic plants by biofertilization with Azotobacter chroococcum

Treść / Zawartość

Warianty tytułu

Języki publikacji



The aim of this study was to examine the effects of management practices and biofertilization on microbial activity in rhizosphere and yield of medicinal and aromatic plants. Field experiment was performed using four plant species: peppermint (Mentha × piperita L.), pot marigold (Calendula officinalis L.), sweet basil (Ocimum basilicum L.), and dill (Anethum graveolens L.). Treatments were arranged in a split-plot layout in four replicates using basic plots under conventional and organic management, and subplots with and without biofertilizer (Azotobacter chroococcum). Organic management positively affected the microbial number and activity. Biofertilization increased the total microbial number (13–21%), number of ammonifiers (13–60%), nitrogen-fixing bacteria (7–36%), actinomycetes (36–50%), fungi (60–100%), cellulolytic microorganisms (57–217%), dehydrogenase (28–52%) and ß-glucosidase activity (15–39%). The effects of management practices and biofertilization were highly significant for the yield of examined plants. The yields were higher on inoculated treatments both in conventional (5–26%) and organic (7–15%) growing system.








Opis fizyczny



  • Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia
  • Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia
  • Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia
  • Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia
  • Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia


  • El-Hadi, N.I.M.A., El-Ala, H.K.A., El-Azim, W.M.A. (2009). Response of some Mentha species to plant growth promoting bacteria (PGPB) isolated from soil rhizosphere. Aust. J. Basic Appl. Sci., 3, 4437–4448.
  • Béguin, P., Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiol. Rev., 13, 25–58.
  • Berg, G., Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol., 68, 1–13. DOI: 10.1111/j.1574-6941.2009.00654.x
  • Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management, Maheshwari, D. (ed.). Springer, Berlin−Heidelberg, 15–45. DOI: 10.1007/978-3-64233639-3_2
  • Briones, A.M., Reichardt, W. (1999). Estimating microbial population counts by ‘most probable number’ using Microsoft Excel. J. Microbiol. Meth., 35, 157–161.
  • Cardoso, E.J.B.N., Vasconcellos, R.L.F., Bini, D., Miyauuchi, M.Y.H., dos Santos, C.A., Alves, P.R.L., de Paula, A.M., Nakatani, A.S., de Moraes Pereira, J., Nogueira, M.A. (2013). Soil health: looking for suitable indicators. What should be considered to assess the effects of use
  • and management on soil health? Sci. Agric., 70, 274– 289. DOI: 10.1590/S0103-90162013000400009
  • Casida, L.E.J., Klein, D.A., Santoro, T. (1964). Soil dehydrogenase activity. Soil Sci., 98, 371–376.
  • Darzi, M.T. (2012). Influence of organic fertilizer and biostimulant on the growth and biomass of dill (Anethum graveolens). Intl. J. Agri. Crop Sci., 4, 98–102.
  • Gomiero, T., Pimentel, D., Paoletti, M.G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci., 30, 95–124. DOI: 10.1080/07352689.2011.554355
  • Hayano, K. (1973). A method for the determination of ß-glucosidase activity in soil. Soil Sci. Plant Nutr., 19, 103–108.
  • Heidari, G., Khosro, M., Sohrabi, Y. (2016). Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) production. Front. Plant Sci., 7, 1730. DOI: 10.3389/ fpls.2016.01730
  • Hosseinzadah, F., Satei, A., Ramezanpour, M.R. (2011). Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrient uptake and physiological characteristics in Calendula officinalis L. Middle East J. Sci. Res., 8, 947–953.
  • IUSS Working Group WRB. (2014). World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome, 181.
  • Jnawali, A.D., Ojha, R.B., Marahatta, M. (2015). Role of Azotobacter in soil fertility and sustainability – A review. Adv. Plants Agric. Res., 2, 00069.
  • Kaschuk, G., Alberton, O., Hungria, M. (2010). Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol. Biochem., 42, 1–13. DOI: 10.1016/j.soilbio.2009.08.020
  • Köberl, M., Schmidt, R., Ramadan, E.M., Bauer, R., Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Front. Microbiol., 4, 400. DOI: 10.3389/ fmicb.2013.00400
  • Lamsal, K., Kim, S.W., Kim, Y.S., Lee, Y.S. (2013). Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol., 23, 897–904. DOI: 10.4014/jmb.1209.09069
  • Liang, C., Balser, T.C. (2011). Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol., 9, 75. DOI: 10.1038/nrmicro2386-c1
  • Mendes, R., Garbeva, P., Raaijmakers, J.M. (2013). The rhizosphere microbiome: significance of plant bene ficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev., 37, 634–663. DOI: 10.1111/1574-6976.12028
  • Mrkovački, N., Milić, V. (2001). Use of Azotobacter croococcum as potentially usefull in agrixultural application. Ann. Microbiol., 51, 145–159.
  • Ordookhani, K., Sharafzadeh, S., Zare, M. (2011). Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv. Environ. Biol., 5, 672–677.
  • Qasim, M., Abideen, Z., Adnan, M.Y., Gulzer, S., Gul, B., Rasheed, M., Khan, M.A. (2017). Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot., 110, 240–250. DOI: 10.1016/j.sajb.2016.10.005
  • Qi, X., Wang, E., Xing, M., Zhao, W., Chen, X. (2012). Rhizosphere and nonrhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J. Microbiol. Biotechnol., 28, 2257–2265. DOI: 10.1007/s11274-012-1033-2
  • Seufert, V., Ramankutty, N., Foley, J.A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485, 229–232. DOI: 10.1038/nature11069
  • Sharma, S., Gupta, R., Dugar, G., Srivastava A.K. (2012). Impact of application of biofertilizers on soil structure and resident microbial community structure and function. In: Bacteria in agrobiology: plant probiotics, Maheshwari, D. (ed.). Springer, Berlin, Heidelberg, 65–77. DOI: 10.1007/978-3-642-27515-9_4
  • Solaiman, Z.M., Anawar, H.Md. (2015). Rhizosphere microbes interactions in medicinal plants. In: Plant growth promoting rhizobacteria (PGPR) and medicinal plants, Egamberdieva, D., Shrivastava, S., Varma, S. (eds). Springer International Publishing, 19–41. DOI: 10.1007/978-3-319-13401-7_2
  • Teixeira da Silva, J.A., Egamberdieva, D. (2013). Plantgrowth promoting rhizobacteria and medicinal plants. In: Recent progress in medicinal plants. Vol. 38. Essential Oils III and Phytopharmacology, Govil, J.N., Bhattacharya, S. (eds). Studium Press LLC, Houston, 26–42.
  • Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Loccoz, Y.M., Muller, D., Legendre, L., Wisniewski-Dyé, F., Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci., 4, 356. DOI: 10.3389/fpls.2013.00356
  • Wani, S.A., Chand, S., Ali, T. (2013). Potential use of Azotobacter chroococcum in crop production: an overview. Curr. Agric. Res., 1, 35–38. DOI: 10.12944/CARJ.1.1.04
  • Wolinska, A., Stepniewska, Z. (2012). Dehydrogenase activity in the soil environment. In: Dehydrogenases, Canuto, R.A. (ed.). InTech, 183–210. DOI: 10.5772/48294

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.