Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Sorption of thallium on walnut shells and its enhancement by the lignosulfonate-stabilized gold colloid

Warianty tytułu
Języki publikacji
The adsorption behavior of walnut shells in the presence of colloidal gold for thallium(I) ions from aqueous solution was investigated. The thallium content in the samples before and after contact with walnut shells was determined by differential pulse anodic stripping voltammetry. The adsorption capacity was studied in relation to the function of equilibrium time, the amount of adsorbent, the concentration of thallium, and pH. For the sake of comparison, the sorptive properties of walnut shells were compared to soapnut powder. The obtained results clearly indicate that both walnut shells and soap nuts are effective sorbents for thallium(I) ions (removal efficiency over 90%). The best results of sorption were achieved at pH = 7.5 after contact time of 30 min. The addition of colloidal gold stabilised by lignosulfonate as the co-adsorber enhances the sorption ability of walnut shells to over 99%.
Słowa kluczowe
Opis fizyczny
  • Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
  • Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
  • Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
  • Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
  • 1. Mahvi A.H., Nouri J., Omrani G.A., Golami F., Application of Platanus orientalis leaves in removal of cadmium from aqueous solution, World Appl. Sci. J., 2 (1), 40, 2007.
  • 2. GROESSLOVA Z., VANEK A., MIHALJEVIČ M., ETTLER V., HOJDOVÁ M., ZÁDOROVÁ T., PAVLŮ L., PENÍŽEK V., VANĚČKOVÁ B., KOMÁREK M., CHRASTNÝ V., ASH C. Bioaccumulation of thallium in a neutral soil as affected by solid-phase association, J. Geochem. Explor., 159, 208, 2015.
  • 3. Rickwood C.J., King M., Huntsman-Mapila P. Assessing the fate and toxicity of thallium I and thallium III to three aquatic organisms, Ecotoxicol. Environ. Saf., 115, 300, 2015.
  • 4. WOJTKOWIAK T., KARBOWSKA B., ZEMBRZUSKI W., SIEPAK M., LUKASZEWSKI Z. Miocene colored waters: A new significant source of thallium in the environment, J. Geochem. Explor., 161, 42, 2016.
  • 5. Yu-Tai T., Huang C., Kuo H., Wang H., Shen W., Shih T., Chu N. Central nervous system effects in acute thallium poisoning, Neurotoxicology, 27, 291, 2006.
  • 6. Dmowski K., Kozakiewicz A. Bioindicational search for thallium in the areas of southern Poland, Kosmos, 51 (2), 151, 2002.
  • 7. Kabata-Pendias A., Pendias H. Biogeochemistry of trace elements, Warszawa, PWN, 1999.
  • 8. Małuszyński M. Thallium in Environment, Ochrona Środowiska i Zasobów Naturalnych, 40, 31, 2009.
  • 9. Paulo A., Lis J., Pasieczna A. Thallium at the end of the twentieth century, Przegląd Geologiczny, Warszawa, 5, 403, 2002.
  • 10. Ralf L., Twiss M.R. Comparative toxicity of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie, Bull. Environ. Contam. Toxicol. 68 (2), 261, 2002.
  • 11. Vaněk A., Chrastný V., Mihaljevič M., Drahota P., Grygar T., Komárek M. Lithogenic thallium behavior in soils with different land use, J. Geochem. Explor., 102 (1), 7, 2009.
  • 12. Krasnodębska -Ostręga B., Kaczorowska M., Golimowski J. Ultrasound-assisted extraction for evaluation of element mobility in bottom sediment collected at mining and smelting Pb-Zn ores area In Poland, Microchim. Acta, 154, 39, 2006.
  • 13. Marqués M.J., Martínez-Conde E., Rovira J.V., Ordóñez S. Heavy metals pollution of aquatic ecosystems in the vicinity of a recently closed underground lead-zinc mine (Basque Country, Spain), Environ. Geol., 40 (9), 1125, 2001.
  • 14. Xiao T., Guha J., Boyle D., Liu C.Q., Chen J. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China, Sci. Total Environ., 318, 223, 2004.
  • 15. Zhang G.P., Liu C.Q., Yang Y.G., Wu P. The characteristics of heavy metals and sulfur isotope of water draining lead-zinc mine in carbonate area, Water, Air, Soil Pollut., 155, 51, 2004.
  • 16. Gur N., Topdemir A. Effects of some heavy metals on in vitro pollen germination and tube growth of apricot (American vulgaris lam.) and cherry (Cerasus avium l.), World Appl. Sci. J., 4 (2), 195, 2008.
  • 17. Mahvi A.H., Bazrafshan E. Removal of cadmium from industrial effluents by electro coagulation process using aluminum electrodes, World Appl. Sci., J., 2 (1), 34, 2007.
  • 18. Nandi B., Goswami A., Purkait M. Removal of Cationic Dyes from Aqueous Solutions by Kaolin: kinetic and equilibrium studies, Appl. Clay. Sci., 42 (3-4), 583, 2009.
  • 19. Yagub M.T., Sen T.K., Afroze S., Ang H.M. Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci., 209, 172, 2014.
  • 20. Birungi Z., Chirwa E. Interpretation of uptake kinetic of thallium and cadmium on surfaces of immobilized green algae as biosorbents, Chem. Eng. Transactions, 49, 421, 2016.
  • 21. Escudero L.B., García C.B., da Silva S.M., Barón J.H. An eco-friendly cellular phase microextraction technique based on the use of green microalgal cells for trace thallium species determination in natural water samples, Anal. Methods, 7, 7480, 2015.
  • 22. Sun J., Zou X., Xiao T., Jia Y., Ning Z., Sun M., Liu Y., Jiang T. Biosorption and bioaccumulation of thallium by thallium-tolerant fungal isolates, Environ. Sci. Pollut. Res. 22, 16742, 2015.
  • 23. He Y., Men B., Yang X., Wang D. Bioturbation/bioirrigation effect on thallium released from reservoir sediment by different organism types, Sci. Total Environ., 532, 617, 2015.
  • 24. Juang R.S., Wu F.Ch., Tseng R.L. Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels, J. Colloid. Interface. Sci., 227, 437, 2000.
  • 25. Dadosh T. Synthesis of uniform silver nanoparticles with a controllable size, Mater. Lett., 63, 2236, 2009.
  • 26. Guo S., Wang E. Synthesis and elektrochemical applications of gold nanoparticles, Anal. Chim. Acta., 598, 181, 2007.
  • 27. BEQA L., SINGH A.K., KHAN S.A., SENAPATI D., ARUMUGAM S.R., RAY P.C. Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samales, ACS Appl. Mater. Interfaces., 3 (3), 668, 2011.
  • 28. Chauhan N., Gupta S., Singh N., Singh S., Islam S.S., Sood K.N., Pasricha R. Aligned nanogold assisted one step sensing and removal of heavy metal ions, J. Colloid. Interface Sci., 363, 42, 2011.
  • 29. HUA C., ZHANG W.H., DE ALMEIDA S.R.M., CIAMPI S., GLORIA D., LIU G., HARPER J.B., GOODING J.J. A novel route to copper(II) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles, Analyst., 137, 82, 2012.
  • 30. KIM Y., JOHNSON R.C., HUPP J.T. Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions, Nano Lett., 1 (4), 165, 2001.
  • 31. ZHIYANG Z., JUN Z., TINGTING L., DAWEI P., LINGXIN CH., CHENGLI Q., ZHAOPENG C.H. Labelfree colorimetric sensing of cobalt(II) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine, Mater. Lett., 63, 2236, 2009.
  • 32. Karbowska B. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods, Environ Monit Assess, 188, 640, 2016.
  • 33. Konowa ł E., Modrzejewska -Sikorska A., Milczarek G. Synthesis and multifunctional properties of lignosulfonate-stabilized gold nanoparticles, Mater. Lett., 159, 451, 2015.
  • 34. Pino G.H., Souza de Mes quita L.M., Torem M.L., Saavedra Pinto G.A. Biosorption of cadmium by green coconut shell powder, Miner. Eng. 19, 380, 2006.
  • 35. Erden E., Kaymaz Y., Pazarlioglu N.K. Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor, Electron. J. Biotechnol., 14 (2), 1, 2011.
  • 36. Moradi O., Norouzi M., Fakhri A., Naddafi K. Interaction of removal Ethidium Bromide with Carbon Nanotube: Equilibrium and Isotherm studies, J. Environ. Health. Sci., 12, 17, 2014.
  • 37. Jayaram K., Murthy I.Y.L.N., Lalhruaitluanga H., Prasad M.N.V. Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L, Colloids Surf. B Biointerfaces., 71, 248, 2009.
  • 38. Martín-Lara M.A., Blázquez G., Ronda A., Pérez A., Calero M. Development and Characterization of Biosorbents To Remove Heavy Metals from Aqueous Solutions by Chemical Treatment of Olive Stone, Ind. Eng. Chem. Res., 52 (31), 10809, 2013.
  • 39. Kumar Y. P., King P., Prasad V. Removal of copper from aqueous solution Rusing Ulva fasciata sp. - A marine green algae, J. Hazard. Mater., 137, 367, 2006.
  • 40. YAPICI S., EROGLU H. Batch biosorption of radioactive thallium on solid waste of oleum rosea process, J. Chem. Technol. Biotechnol., 88 (11), 2082, 2013.
  • 41. Urík M., Kramarová Z., Ševc J., Čerňanský S., Kališ M., Medveď J., Littera P., Kolenčík M., Gardosova K. Biosorption and Bioaccumulation of Thallium(I) and Its Effect on Growth of Neosartorya fischeri Strain, Pol. J. Environ. Stud., 19 (2), 457, 2010.
  • 42. Sheibani A., Zare -Khormizi M. Application of factorial design for adsorption of thallium(III) ion from aqueous solutions by pistachio hull, Indian J. Chem. Techn., 19, 48, 2012.
  • 43. Hanafi A. Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon, J. At. Mol. Sci., 1 (4), 292, 2010.
  • 44. Twidwell L.G., Williams C. Potential Technologies for Removing Thallium from Mine and Process Wastewater: An Abbreviated Annotation of the Literature, Eur. J. Miner. Process. Environ. Prot., 2 (1), 1, 2002.
  • 45. Kamar F., Nechifor F., Mohammed A.C., Craciun M.E. Removal of Lead and Cadmium Ions from Aqueous Solution using Walnut Shells as Low-Cost Adsorbent Materials, Rev. Chim., 66 (5), 615, 2015.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.