EN
Apigenin, quercetin and genistein are members of the family of plant flavonoids suspected to prevent a number of human diseases, for instance cancer development. They display a number of activities, and part of their beneficial effects may be due to their affinity to cellular membranes. In this study, we used Conocephalum conicum, a well-elaborated model of liverworts. Intracellular microelectrode measurements were carried out to examine the effects of flavonoids in combination with neomycin on the resting and action potentials. Neomycin triggered gradual decline of action potential amplitudes through a membrane potential decrease (membrane potential became less negative) and a decrease of the action potential peak value. Additionally, duration of action potential amplitudes measured at half of the amplitude increased in neomycintreated plants. However, the simultaneous use of quercetin or genistein (but not apigenin) with neomycin hindered neomycin-specific actions. Hence, the membrane resting potential and action potential amplitudes regained neomycin-free values. It may be concluded that application of at least some flavonoids (namely quercetin and genistein) exerts strong influence on electrical membrane responses in C. conicum.