PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Differences in leaf functional traits between simple and compound leaves of Canavalia maritime

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The response of leaf functional traits to the shift in environmental variables can raise plant adaptiveness in a wide variety of habitats and subsequently broaden their ecological niche. This study aims to determine the differences in leaf functional traits between simple and compound leaves of Canavalia maritime to illuminate the mechanisms underlying the ecological strategy of plant species with different leaf forms. Single-leaf wet weight of compound leaves of C. maritime was significantly lower than that of simple leaves of C. maritime. Thus, compound leaves of C. maritime possess higher resource capture ability as well as higher relative growth rate than simple leaves of C. maritime. The petiole length of compound leaves of C. maritime was significantly higher than that of simple leaves of C. maritime. Thus, the biomass allocation to petiole for compound leaves of C. maritime was significantly higher than that of simple leaves of C. maritime. Meanwhile, the higher range of phenotypic plasticity of SLA of compound leaves of C. maritima may enhance the advantage in resource (especially sunlight) capture and use efficiency by shifting the material investment per unit area and per lamina.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1425-1432,ref.

Twórcy

autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China

Bibliografia

  • 1. Liu F.D., Yang W.J., Wang Z.S., Xu Z., Liu H., Zhang M., Liu Y.H., An S.Q., Sun S.C. Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species. Acta Oecol 36, 149, 2010.
  • 2. Meng F.Q., Cao R., Yang D.M., Niklas K.J., Sun S. Trade-offs between light interception and leaf water shedding: A comparison of shade- and sun-adapted species in a subtropical rainforest. Oecologia 174, 13, 2014.
  • 3. Poorter H., Niinemets Ü., Poorter L., Wright I.J., Villar R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182, 565, 2009.
  • 4. Wang C.Y., Liu J., Xiao H.G., Du D. Response of leaf functional traits of Cerasus yedoensis (Mats.) Yü li to serious insect attack. Pol J Environ Stud 25, 333, 2016.
  • 5. Wang C.Y., Xiao H.G., Liu J., Zhou J.W., Du D.L. Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina. Pol J Environ Stud 25, 1279, 2016.
  • 6. Wang C.Y., Liu J., Xiao H.G., Zhou J.W. Differences in leaf functional traits between Rhus typhina and native species. CLEAN-Soil, Air, Water 44, 1591, 2016.
  • 7. Sevik H., Cetin M., Kapucu O., Aricak B., Canturk U. Effects of light on morphologic and stomatal characteristics of turkish fir needles (Abies nordmanniana subsp. Bornmulleriana mattf.). Fresen Environ Bull 26, 6579, 2017.
  • 8. Scheepens J.F., Frei E.S., Stöcklin J. Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia 164, 141, 2010.
  • 9. Pietsch K.A., Ogle K., Cornelissen J.H.C., Cornwell W.K., Bönisch G., Craine J.M., Jackson B.G., Kattge J., Peltzer D.A., Penuelas J., Reich P.B., Wardle D.A., Weedon J.T., Wright I.J, Zanne A.E., Wirth C. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecol Biogeogr 23, 1046, 2014.
  • 10. Gallagher R.V., Randall R.P., Leishman M.R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv Biol 29, 360, 2015.
  • 11. Soudzilovskaia N.A., Elumeeva T.G., Onipchenko V.G., Shidakov I.I., Salpagarova F.S., Khubiev A.B., Tekeev D.K., Cornelissen J.H. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc Natl Acad Sci USA 110, 18180, 2013.
  • 12. Wang C.Y., Zhou J.W., Jiang K., Liu J. Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina. South Afr J Bot 111, 17, 2017.
  • 13. Wang C.Y., Jiang K., Liu J., Zhou J.W., Wu B.D. Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China. Ecol Eng 112, 55, 2018.
  • 14. Warman L., Moles A.T., Edwards W. Not so simple after all: searching for ecological advantages of compound leaves. Oikos 120, 813, 2011.
  • 15. Malhado A.C.M., Whittaker R.J., Malhi Y., Ladle R.J., ter Steege H., Phillips O., Aragão L.E.O.C., Baker T.R., Arroyo L., Almeida S., Higuchi N., Killeen T.J., Monteagudo A., Pitman N.C.A., Prieto A., Salomão R.P., Vásquez-Martínez R., Laurance W.F., Ramírez-Angulo H. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecol Biogeogr 19, 852, 2010.
  • 16. Li G.Y., Yang D.M., Sun S.C. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Funct Ecol 22, 557, 2008.
  • 17. Xiang S., Wu N., Sun S.C. Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees 23, 637, 2009.
  • 18. Hang Z.H., Wu H.P. Zhenjiang Yearbook (The first edition). Organized by Zhenjiang Municipal People’s Government, Writed by Zhenjiang Local Records Office (Vol. 25). In: Chen J, Liu S (eds). Publishing House of Local Records, Beijing, 27, 2016.
  • 19. Wang C.Y., Zhou J.W., Xiao H.G., Liu J., Wang L. Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. J For Res 28, 241, 2017.
  • 20. Jeong N., Moon J.K., Kim H.S., Kim C.G., Jeong S.C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet 122, 865, 2011.
  • 21. Wang Z., Zhang L. Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet. Photosynthetica 50, 337, 2012.
  • 22. Valladares F., Balaguer L., Martinez-Ferri E., Perez-Corona E., Manrique E. Plasticity, instability and canalization: Is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156, 457, 2002.
  • 23. Lamarque L.J., Porte A.J., Eymeric C., Lasnier J.-B., Lortie C.J., Delzon S. A test for pre-adapted phenotypic plasticity in the invasive tree Acer negundo L. PLoS One 8, e74239, 2013.
  • 24. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res 27, 209, 1967.
  • 25. Poorter L., Bongers L., Bongers F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87, 1289, 2016.
  • 26. Nagel J.M., Griffin K.L. Construction cost and invasive potential: comparing Lythrum salcaria (Lythraceae) with co-occurring native species along pond banks. Am J Bot 88, 2252, 2001.
  • 27. Hou Q.Q., Chen B.M., Peng S.L., Chen L.Y. Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biol Invasions 16, 2049, 2014.
  • 28. Niinemets Ü., Sack L. Structural determinants of leaf light-harvesting capacity and photosynthetic potential. Prog Bot 67, 386, 2006.
  • 29. Mcintyre P.J., Strauss S.Y. Phenotypic and transgenerational plasticity promote local adaptation to sun and shade environments. Ecol Evol 28, 229, 2014.
  • 30. Niklas K.J., Cobb E.D., Niinemets U., Reich P.B., Sellin A., Shipley B., Wright I.J. “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci USA 104, 8891, 2007.
  • 31. Burns K.C., Beaumont S.A.M. Scale-dependent trait correlations in a temperate tree community. Austral Ecol 34, 670, 2009.
  • 32. Wright I.J., Ackerly D.D., Bongers F., Harms K.E., Ibarra-Manriquez G., Martinez-Ramos M., Mazer S. J., Muller-Landau H.C., Paz H., Pitman N.C.A., Poorter L., Silman M.R., Vriesendorp C.F., Webb C.O., Westoby M., Wright S.J. Relationships among ecologically-important dimensions of plant trait variation in seven neotropical forests. An Bot 99, 1003, 2007

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4ee1da89-8bc0-4b67-9016-ff50e77c26c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.