PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |
Tytuł artykułu

Physical properties of unproductive soils of Northern China

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The general characteristics: particle size distribution, pH, cation exchange capacity, organic matter content, total NPK, surface area; and physical properties: coefficient of linear extensibility, tensile strength, shear strength and cracking, were investigated in unproductive soils of Northern China. Principle component analysis showed that tensile strength, cohesion, cracking characteristics, clay content, cation exchange capacity and coefficient of linear extensibility were positively correlated with each other, whereas negatively correlated with angle of friction, indicating that these properties were subjected to clay % and smectite content. These correlations might be mainly responsible for low productivity (low yields) in Northern China.
Wydawca
-
Rocznik
Tom
28
Numer
4
Opis fizyczny
p.459-469,fig.,ref.
Twórcy
autor
  • Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People Republic of China
autor
  • Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, People Republic of China
autor
  • Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People Republic of China
autor
  • Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People Republic of China
Bibliografia
  • Abid M. and Lal R., 2009. Tillage and drainage impact on soil quality: II. Tensile strength of aggregates,moisture retention and water infiltration. Soil Till. Res., 103, 364-372. Al-Shayea N.A., 2001. The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Eng. Geo., 62, 319-342.
  • Bao S.D., 2000. Soil and Agricultural Analysis (In Chinese). China Agricultural Press, Beijing, China.
  • Bandyopadhyay K., Mohanty M., Painuli D., Misra A., Hati K., Mandal K., Ghosh P., Chaudhary R., and Acharya C., 2003. Influence of tillage practices and nutrient management on crack parameters in a Vertisol of central India. Soil Till. Res., 71, 133-142.
  • Bhattarai P., Marui H., Tiwari B., Watanabe N., and Tuladhar G., 2007. Depth-wise variation of physical and mechanical properties of mudstone in relation to weathering. J. Jpn. Ls. Soc., 44, 79-89.
  • Biswas T.D. and Mukherjee S., 2001. Textbook of Soil Science. Tata McGraw-Hill, New Delhi, India.
  • Blanco-Canqui H. and Lal R., 2007. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Till. Res., 95, 240-254.
  • Boivin P., Garnier P., and Tessier D., 2004. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J., 68, 1145-1153.
  • Crescimanno G. and Provenzano G., 1999. Soil shrinkage characteristic curve in clay soils: Measurement and prediction. Soil Sci. Soc. Am. J., 63, 25-32.
  • Dadfar H., Allaire S.E., De Jong R., van Bochove E., Denault J.T., Theriault G., and Dechmi F., 2010. Development of a method for estimating the likelihood of crack flow in Canadian agricultural soils at the landscape scale. Can. J. Soil Sci., 90, 129-149.
  • Dinka T.M., Morgan C.L., McInnes K.J., Kishné A.S., and Daren H.R., 2012. Shrink-swell behavior of soil across a Vertisol. Catena, J. Hyd., 476, 352-359.
  • Donghong X., Dan Y., Jiajia L., Zheng’an S., Yifan D., and Juan Z., 2013. Influence factors of morphological development of soil cracks in degraded slopes in Yuanmou dry-hot valley region (in Chinese). Tran. Chi. Soc. Agr. Eng., 29, 102-108.
  • Greene R.S., Eggleton R.A., and Rengasamy P., 2002. Relationships between clay mineralogy and the hardsetting properties of soils in the Carnarvon horticultural district of Western Australia. Appl. Clay Sci., 20, 211-223.
  • Grossman R., Brasher B., Franzmeier D., and Walker J., 1968. Linear extensibility as calculated from natural-clod bulk density measurements. Soil Sci. Soc. Am. J., 32, 570-573.
  • Huang D.M., Zhu P.li., Li Q.K., Yu X.H., and Yu J., 1997. Hydrophysical characteristics of Vertisol in low land areas of Jiangsu province (in Chinese). Jiangsu J. of Agr. Sci., 13, 44-50.
  • Imhoff S., da Silva A.P., and Dexter A., 2002. Factors contributing to the tensile strength and friability of Oxisols. Soil Sci. Soc. Am. J., 66, 1656-1661.
  • Li D., Zhang G., and Gong Z., 2011. On Taxonomy of Shajiang Black Soils in China (in Chinese). Soils, 43, 623-629.
  • Liangwu L., 1991. Formation and evolution of Vertisols in Huaibei Plain. Pedosphere 1, 3-15.
  • Liu S.F., Qin S.Y., Ge C.B., and Zhang Y.D., 2011. Study on wheat production status of Shajiang black soil (in Chinese). Mod. Agr. Sci. and Tech., 22, 292-302.
  • Min Z., Liangwu L., and Zitong G., 1993. Age and some genetic characteristics of Vertisols in China. Pedosphere, 3, 247-256.
  • Moormann F.R., 1978. Rice: Soil, Water, Land. Int. Rice Res. Inst., Los Banos, Laguna, Phillipines.
  • Moustakas N., 1990. Relations between morphological and physicochemical properties of Vertisols in Greece. Ph.D. Thesis,Agricultural University of Athens, Greece. Moustakas N., 2012. A study of Vertisol genesis in North Eastern Greece. Catena, 92, 208-215.
  • Pal D., Wani S., and Sahrawat K., 2012. Vertisols of tropical Indian environments: Pedology and edaphology. Geoderma, 189, 28-49.
  • Schafer W.M. and Singer M.J., 1976. A new method of measuring shrink-swell potential using soil pastes. Soil Sci. Soc. Am. J., 40, 805-806.
  • Stark T.D. and Eid H.T., 1994. Drained residual strength of cohesive soils. J. Geo. Eng., 120, 856-871.
  • Tiwari B. and Ajmera B., 2011. Consolidation and swelling behavior of major clay minerals and their mixtures. Appl. Clay Sci., 54, 264-273.
  • Tiwari B. and Marui H., 2003. Estimation of residual shear strength for bentonite-kaolin-Toyoura sand mixture. J. Jpn. Ls. Soc., 40, 124-133.
  • Tiwari B. and Marui H., 2005. A new method for the correlation of residual shear strength of the soil with mineralogical composition. J. Geotech. Geoenviron., 131, 1139-1150.
  • Wilson M.G., Sasal M.C., and Caviglia O.P., 2013. Critical bulk density for a Mollisol and a Vertisol using least limiting water range: Effect on early wheat growth. Geoderma, 192, 354-361.
  • Xuelei Z. and Zitong G., 2004. A pedodiversity pattern: taxonomically established soil orders in China. J. Geogr. Sci., 14, 52-56.
  • Zhang H., Hartge K., and Ringe H., 1997. Effectiveness of organic matter incorporation in reducing soil compactibility. Soil Sci. Soc. Am. J., 61, 239-245.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4ea6315d-cee4-4132-a400-8e22a57aca9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.