PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 163 | 12 |

Tytuł artykułu

Wpływ Bacillus subtilis i Trichoderma asperellum na rozwój sadzonek brzóz zainfekowanych patogenem drobnych korzeni Phytophthora plurivora

Treść / Zawartość

Warianty tytułu

EN
Influence of Bacillus subtilis and Trichoderma asperellum on the development of birch seedlings infected with fine root pathogen Phytophthora plurivora

Języki publikacji

PL

Abstrakty

EN
Phytophthora pathogens cannot be controlled with well−known fungicides, because as oomycetes they do not synthesize chitin and ergosterol. Phytopathogenic microorganisms of Phytophthora genus offers an alternative to pesticides. The aim of the study was to understand the interactions among the host silver birch (Betula pendula), a common forest tree species in Polish lowlands and in lower mountain locations, and its primary pathogen Phytophthora plurivora as well as potential Biological Control Agents Bacillus subtilis and Trichoderma asperellum. The 2−year−old silver birch seedlings were selected for this experiment. Interactions between P. plurivora and B. subtilis, producing peptide antibiotics including polymyxin B and subtiline, stimulated growth of birch seedlings. Comparing to the control a stimulation of both height and root collar diameter of plants was observed when B. subtilis was added into the soil of pots. It is a saprophyte, decomposing organic compounds of plant origin. However, the application of bacterium into the rhizosphere soil stimulated more shoots growth than roots. The application of T. asperellum into the soil stimulated development of roots, and in consequences the above−ground parts of plants. However, in the combination with pathogen, T. asperellum protected the roots only partially. The presence of pathogen and its antagonists increases the biomass of birches compared to control plants. Chlorophyll fluorescence studies proved better parameters like total performance index (PI total) after application of B. subtilis, in contrast, interaction between B. subtilis and P. plurivora negatively affected photosynthesis causing weakening of plants. The higher content of carboxylic acids, observed in the variant with T. asperellum + P. plurivora, indicates the initiation of biochemical defence processes in birch leaves cells.

Wydawca

-

Czasopismo

Rocznik

Tom

163

Numer

12

Opis fizyczny

s.1006-1015,rys.,tab.,bibliogr.

Twórcy

autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Samodzielny Zakład Botaniki Leśnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zamiejscowy Wydział Leśny w Hajnówce, Politechnika Białostocka, ul.Piłsudskiego 1A, 17-200 Hajnówka
  • Instytut Nauk Biologicznych, Uniwersytet Kardynała Stefana Wyszyńskiego, ul.Wóycickiego 1/3, 01-938 Warszawa

Bibliografia

  • Bae S.-J., Mohanta T. K., Chung J. Y., Ryu M., Park G., Shim S., Hong S. B., Hong S. B., Seo H., Bae D. W., Bae I. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92: 128-138.
  • Ban G., Akanda S., Maino M. 2018. The effect of Trichoderma on the growth and development of tomato and bean under greenhouse and field conditions. Ann. Trop. Res. 40: 35-45.
  • Becker E. M. 2011. Trichoderma spp.: antagonistic effects to Phytophthora ramorum growth and spore germination in vitro. Plant Canada Conference Proceedings. July 17-21, 2011. Halifix, Nova Scotia. 173-174.
  • Caulier S., Gillis A., Colau G., Licciardi F., Liépin M., Desoignies N., Bragard C. 2018. Versatile Antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front. Microbiol 9: 143.
  • Cetner M. D., Dąbrowski P., Samborska I. A., Lukasik I., Swoczyna T., Pietkiewicz S., Baba W., Kajali H. M. 2016. Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych. Kosmos 65: 197-205.
  • Costa J. L. S., Menge J. A., Casale W. L. 2000. Biological control of Phytophthora root rot of avocado with microorganisms grown in organic mulches. Braz. J. Microbiol. 31 (4): 239-246.
  • Crombie S. D., Tippett J. T. 1990. A comparison of water relations, visual symptoms, and changes in stem girth for evaluating impact of Phytophthora cinnamomi dieback on Eucalyptus marginata. Can. J. For. Res. 20: 233-240.
  • Fleischmann F., Koehl J., Portz R., Bletrame A. B., Oßwald W. 2005. Physiological changes of Fagus sylvatica L. seedlings infected with Phytophthora citricola and the contribution of its elicitin ‘citricolin’ to pathogenesis. Plant Biol. 32: 375-390.
  • Grosch R., Junge H., Krebs B., Bochow H. 1999. Use of Bacillus subtilis as a biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. J. Plant Dis. Protect. 106 (6): 568-580.
  • Harman G., Howell Ch. R., Viterbo A. 2004. Trichoderma species – opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 21: 43-56.
  • Hashem A., Abd Allah E. F. 2019. Bacillus subtilis: A plant – growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26: 1291-1297.
  • Hermosa M. R., Grondona I., Iturriaga E. A., Diaz-Minguez J. M., Castro C., Monte E., Garcia-Acha I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66 (5): 1890-1898.
  • Hermosa R., Viterbo A., Chet I., Monte E. 2012. Plant – beneficial effects of Trichoderma and of its genes. Microbiology 158: 17-25.
  • Hohmann P., Stewart A. 2011. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere promotion for commercially grown seedlings. Fungal Biol. 115: 759-767.
  • Howell C. R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87: 4-10.
  • Hussain M. Y., Ali-Nizam A. A., Abou-Isba S. M. 2017. Antibacterial activities (Bacitracin A and Polymyxin B) of lyophilized extracts from indigenous Bacillus subtilis against Staphylococcus aureus. J. J. Biol. Sci. 10: 205-212.
  • Ishikawa H., Oki T., Kiriyama H. 1976. The toxic function of antifugal compounds prepared by some Hypocrea species to wood-rooting fungi. Rep. Tottori Mycol. Inst. 14: 105-110.
  • Jagtapa G. P., Dhavalea M. C., Deya U. 2012. Evaluation of natural plant extracts, antagonists and fungicides in controlling root rot, collar rot, fruit (brown) rot and gummosis of citrus caused by Phytophthora spp. in vitro. Scientific J. Microbiol. 1 (2): 27-47.
  • Jung T., Blaschke H., Neumann P. 1996. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 26: 253-272.
  • Jung T., Burgess T. I. 2009. Reevaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia 22: 95-110.
  • Kalaji H. M. 2011. Oddziaływanie abiotycznych czynników stresowych na fluorescencję chlorofilu w roślinach wybra-nych odmian jęczmienia Hordeum vulgare L. Wydawnictwo SGGW, Warszawa.
  • Kowalska J., Drożdżyński D., Kaczmarek D. 2017. The use of Bacillus subtilis for the protection of potato against Phytophthora infestans in organic farming. J. Res. Appl Agric. Engin. 62 (3): 186-189.
  • Kulbat K. 2016. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 80: 97-108.
  • Kumar K. V. K., Yellareddygari S. K., Reddy M. S., Kloepper J. W., Lawrence K. S., Zhou X. G., Sudini H., Groth D. E., Raju S. K., Miller M. E. 2012. Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Sci.19 (1): 55-63.
  • Lara-Chávez M. B. N., Ávila-Val T. C., Guerrero-Tejeda J. A., Barriga-González F. S., Venegas-González E., Aguirre-Paleo S., Vargas-Sandoval M., Andrade H. G., Rodriguez-López S. 2012. Biological and chemical control in rot root in avocado by Phytophthora cinnamomi Rands. J. Agric. Sci. Technol. A 2: 882-887.
  • Manter D. K., Kelsey R. G., Karchesy J. J. 2007. Photosynthetic declines in Phytophthora ramorum infected plants develop prior to water stress and in response to exogenous application of elicitins. Phytopathol. 97: 850-856.
  • Maurel M., Robin C., Simmoneau T., Loustau D., Dreyer E., Desprez-Loustau M. L. 2004. Stomatal conductance and root-to-shoot signaling in chestnut saplings exposed to Phytophthora cinnamomi or partial soil drying. Funct. Plant Biol. 31: 41-51.
  • Mazid M., Khan T. A., Mohhamad F. 2011. Role of secondary metabolites in defense mechanisms in plants. Biol. Med. 3: 232-249.
  • Munnecke D. E., Kolbezen M. J., Wilbur W. D., Ohr H. D. 1981. Interactions involved in controlling Armillaria mellea [Citrus, antagonistic Trichoderma fungi]. Plant Diseases.
  • Okbasillasie A. A. 2005. Biological control of Phytophthora root rot of citrus seedlings and cuttings: Thesis for the degree of Master of Science in the discipline of Plant Pathology, School of Biochemistry, Genetics, Microbiology and Plant Pathology. Univers. of KwaZulu-Natal, Pietermaritzburg.
  • Orlikowski L. B., Ptaszek M., Rodziewicz A., Nechwatal J., Thinggaard K., Jung T. 2011. Phytophthora root and collar rot of mature Fraxinus excelsior in forest stands in Poland and Denmark. Forest Pathology 41 (6): 510-519.
  • Papavizas G. C. 1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Ann. Rev. Phytopathol. 23: 23-54.
  • Rytkönen A., Lilja A., Vercauteren A., Sirkiä S., Parikka P., Soukainen M., Hantula J. 2012. Identity and potential pathogenicity of Phytophthora species found on symptomatic Rhododendron plants in a Finnish nursery. Can. J. Plant Pathol. 34 (2): 255-267. DOI: 10.1080/07060661.2012.686455.
  • Samborska I. A., Kalajia H. M., Sieczkoc L., Borucki W., Mazur R., Kouzmanova M., Goltsev V. 2018. Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanussativus L. sativus) plants? Curr. Plant Biol. DOI: https://doi.org/10.1016/j.cpb.2018.12.002.
  • Sánchez- Sánchez H., Morquecho-Conteras A. 2017. Chemical plant defence against herbivores. DOI: http://dx.doi.org/ 10.5772/6734.
  • Schoeneweiss D. F. 1978. Water stress as predisposing factor in plant disease. W: Kozlowski T. T. [red.]. Water deficits and plant growth. Academic Press, New York. 61-99.
  • Stocki M., Zapora E., Rój E., Bakier S. 2018. Pozyskiwanie substancji biologicznie aktywnych z odpadów zrębowych brzozy (Betula spp.) z zastosowaniem ditlenku węgla w stanie nadkrytycznym. Przem. Chem. 97 (5): 774-778.
  • Vandriesche R. G., Bellows T. S. 1996. Biological control. Chapman and Hall, New York.
  • Voitka D. V., Orlikowski L. B. 2005. Izuczenije antagonizma mikromicetow Trichoderma spp. po otnoszeniju k wozbuditielam bolezniej sp. Phytophthora Third Moscow Intern. Congress ‘Biotechnology: state and prospects of development’. Moscow, 14-18 March 2005. Congress Materials 1: 237-238.
  • White T. J., Bruns T., Lee S., Taylor J. 1990. The PCR Protocols: A guide to methods and applications. W: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. [red.]. Academic Press, Inc., New York. 315-322.
  • Yánez-Mendizábal V., Zeriouh H., Vińas I., Torres R., Usall J., Vicente A. D., Pérez-García A., Teixidó N. 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J. Plant Patholol. 132: 609-619.
  • You C., Zhang C., Kong F., Feng C., Wang J. 2016. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol. Eng. 91: 119-125.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4e907e8e-b3f0-45b1-be5b-5f41da145f90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.