PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 588 |

Tytuł artykułu

Wybrane zagadnienia z zakresu biologii, hodowli i reprodukcji chryzantemy wielkokwiatowej

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Selected aspects of biology, breeding and reproduction of Chrysanthemum

Języki publikacji

PL

Abstrakty

PL
Chryzantema wielkokwiatowa zaliczana jest do najbardziej popularnych roślin ozdobnych na rynku ogrodniczym. Światowa produkcja tego gatunku rośnie z każdym rokiem. Skomplikowana biologia chryzantemy (wysoki poziom ploidalności, heterozygotyczność, poligeniczna kontrola kwitnienia, samoniezgodność oraz ograniczona żywotność pyłku) ogranicza jednak skuteczność tradycyjnych metod hodowlanych (krzyżowanie i selekcję). Dzisiaj, aby zaspokoić rosnące wymogi rynku w hodowli i rozmnażaniu tego gatunku, stosuje się nowoczesne osiągnięcia biotechnologii. W celu pozyskiwania nowych odmian wykorzystuje się hodowlę mutacyjną. W jej efekcie często uzyskuje się jednak chimery. Organizmy takie wymagają opracowania szczególnych warunków rozmnażania i przechowywania. Ostatnie dekady przyniosły jednak znaczący postęp w zakresie wykorzystania kultur tkankowych w reprodukcji chryzantemy. Celem niniejszej pracy jest przedstawienie wybranych zagadnień z zakresu biologii oraz nowoczesnych metod hodowli i reprodukcji chryzantemy wielkokwiatowej.
EN
Due to a great variety of flower shapes and colours, chrysanthemum is one of the most popular ornamental plants. It is expected that in the future chrysanthemum may become the number one product on the market. However, a complicated biology of the species; high ploidy and heterozygosis, polygenic control of flowering, self-incompatibility and limited pollen viability, reduces the efficiency of traditional breeding methods (selection and crossing), popular in the 19th century when they allowed for the production of dozens of cultivars. Today, in order to meet the growing demands of the market, modern biotechnology tools are applied. Mutation breeding (with the use of physical agents: 5–30 Gy X or gamma irradiation mainly) are commonly used since the 1960s. The technique facilitates a fast and low-cost production of new cultivars; with changed flower colour, leaf shape or the entire plant architecture being altered. The most efficient cultivars used as a source of explants for mutation breeding are those of purple flowers, while the least – the yellow-blooming ones. As a results of induced or spontaneous mutations, however, genetically unstable chimeras are often regenerated, if the mutation is present only in the part of the meristem. Such organisms require particular consideration while developing protocols for their storage and propagation, since they are vulnerable for the separation of chimerical components. The recent decades have brought a significant progress in the application of tissue culture in chrysanthemum reproduction and breeding. In vitro cultivation of chrysanthemum was first developed in the 20th century and used for eliminating viruses and other pathogens. For this purpose meristem cultures have been still applied. The most popular application of tissue cultures, however, is micropropagation. As for chrysanthemum, various explant types were used for multiplication; roots, leaves, nodes, internodes and flowers. In general, stem explants are more efficient than leaves in terms of the multiplication rate, while flowers are more susceptible to the occurrence of somaclonal variation. Explants with meristems, usually single-node fragments, are used for vegetative multiplications of periclinal chimeras since only then can their stability be maintained. Other techniques; adventitious organogenesis and somatic embryogenesis, are more efficient, as based on the concept of plant totipotency, however, they are more threatened with somaclonal variation occurrence and have a limited use with commercial propagation of chimeras. Still they are very useful in both mutation and transgenic breeding at the stage of regeneration. To stimulate regeneration cytokinins, usually benzyladenine, and various auxins, in lower concentrations, are applied. The aim of this paper is to present selected aspects of biology and modern methods of breeding and reproduction in chrysanthemum.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

588

Opis fizyczny

s.47-61,bibliogr.

Twórcy

autor
  • Uniwersytet Technologiczno-Przyrodniczy im.J.J.Śniadeckich w Bydgoszczy

Bibliografia

  • Anderson N.O., Ascher P.D., Widmer R.E., 1988. Thin-layer chromatographic analysis of flower color phenotypes in Dendranthema grandiflorum Ramatuelle inbreds and clonal cultivars. Euphytica 37, 229–239.
  • Barakat M.N., Abdel Fattah R.S., Badr M., El-Torky M.G., 2010. In vitro culture and plant regeneration derived from ray florets of Chrysanthemum morifolium. Afr. J. Biotech. 9(8), 1151–1158.
  • Broertjes C., 1966. Mutation breeding of chrysanthemums. Euphytica 15, 156–162.
  • Broertjes C., Koene P., Pronk T.H., 1983. Radiation-induced low-temperature tolerant cultivars of Chrysanthemum morifolium Ram. Euphytica 32, 97–101.
  • Chen F-D., Li F-T., Chen S-M., Guan Z-Y., Fang W-M., 2009. Meiosis and pollen germability in small-flowered anemone type chrysanthemum cultivars. Plant Syst. Evol. 280, 143–151.
  • De Jong J., Custers J.B.M., 1986. Induced changes in growth and flowering of chrysanthemum after irradiation and in vitro culture of pedicels and petal epidermis. Euphytica 35, 137–148.
  • Dowrick G.J., 1953. The chromosomes of chrysanthemum II. Heredity 7, 59–72.
  • Dowrick G.J., El-Bayoumi A., 1966. The induction of mutations in chrysanthemum using X and gamma radiation. Euphytica 15, 204–210.
  • Earle E.D., Langhans R.W., 1974. Propagation of chrysanthemum in vitro I. Multiple plantlets from shoot tips and the establishment of tissue cultures. J. Am. Soc. Hortic. Sci. 99, 128–131.
  • Gao Y., Chen B., Zhang J., 2011. Anther culture of garden chrysanthemum. Acta Hortic. 923, 103–110.
  • Grewal H.S., Gosal S.S., Arora J.S., Singh K., 1996. Propagation of ornamental plants through tissue culture. W: A.S. Islam (red.), Plant Tissue Culture. Oxford & IBH Publishing, New Dehli, 37–41.
  • Grotewold E., 2006. The genetics and biochemistry of floral pigments. Ann. Rev. Plant Biol. 57, 761–780.
  • Hejnowicz Z., 2002. Anatomia i histogeneza roślin naczyniowych. Państwowe Wydawnictwo Naukowe PWN, Warszawa.
  • Hill G.P., 1968. Shoot formation in tissue cultures of Chrysanthemum ‘Bronze Pride’. Physiol. Plant. 21(2), 386–389.
  • Ilahi I., Jabeen M., Sadaf N., 2007. Rapid clonal propagation of Chrysanthemum through embryogenic callus formation. Pak. J. Bot. 39(6), 1945–1952.
  • Jabłońska L., Perzyńska K., 2009. The level of demand for ornamental plants in Warsaw in 2007 and its determinants. Zesz. Nauk. Instytutu Sadownictwa i Kwiaciarstwa 17, 119–132.
  • Jabłońska L., Sobczak W., 2011. Rynek chryzantemy w Polsce w okresie Święta Wszystkich Świętych. Roczniki N. Rol. S. G. 98(4), 66–76.
  • Jerzy M., 2000. Chryzantemy. PWRiL, Warszawa.
  • Jerzy M., Zalewska M., Piszczek P., 1991. Mutageneza u chryzantemy wielkokwiatowej (Dendranthema grandiflora Tzvelev) indukowana in vitro promieniowaniem X i gamma. Hodowla Roślin i Nasiennictwo 3, 24–29.
  • Jevremović S., Trifunović M., Nikolić M., Subotić A., Radojević L., 2006. Clonal fidelity of chrysanthemum regenerated from long term cultures. Genetika 38(3), 243–249.
  • Kaul V., Miller R.M., Hutchinson J.F., Richards D., 1990. Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev. Plant Cell Tiss. Org. Cult. 21, 21–30.
  • Kereša S., Mihovilović A., Barić M., Židovec V., Skelin M. 2012. The micropropagation of chrysanthemums via axillary shoot proliferation and highly efficient plant regeneration by somatic embryogenesis. Afr. J. Biotech. 11(22), 6027–6033.
  • Kulus D., 2015. Application of cryopreservation for chrysanthemum genetic resources conservation. ISHS Acta Horticulturae 1087, 225–232.
  • Lamseejan S., Jompuk P., Wongpiyasatid A., Deeseepan S., Kwanthammachart P., 2000. Gammarays induced morphological changes in chrysanthemum (Chrysanthemum morifolium). Kasetsart J. Nat. Sci. 34, 417–422.
  • Lee G-J., Chung S.J., Park I.S., Lee J.S., Kim J–B., Kim D.S., Kang S-Y., 2008. Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis. J. Plant Biol. 51(6), 418–423.
  • Lee S.Y., Kim J.H., Cheon K.S., Lee E.K., Kim W.H., Kwon O.H., Lee H.J., 2013. Phenotypic and molecular characteristics of second clone (T0V2) plants of the LeLs-antisense gene-transgenic chrysanthemum line exhibiting non-branching. J. Plant Biotech. 40, 192–197.
  • Lema-Rumińska J., Tymoszuk A., Miler N., Durau B., 2015. Regeneracja kalusa z eksplantatów korzeniowych u Chrysanthemum ×grandiflorum (Ramat.) Kitam. ZPPNR 580, 53–61.
  • Mandal A.K.A., Chakrabarty D., Datta S.K., 2000. In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114, 9–12.
  • Marcotrigiano M., 1997. Chimeras and variegation, patterns and deceit. Hort. Sci. 32, 773–784.
  • Miler N., 2005. Dlaczego warto stosować mutagenezę indukowaną w hodowli chryzantem? Biotechnologia 69, 196–205.
  • Miler N., 2013. A może by tak wrócić do krzyżowania chryzantem? Materiały z sympozjum nt. „Co nowego w chryzantemach”, Poznań, 28–31.
  • Miler N., Zalewska M., 2014. Somaclonal variation of chrysanthemum propagated in vitro from different explants type. Acta Sci. Pol., Hort. Cult. 13(2), 69–82.
  • Miñano H.S., Ibáñez M., González-Benito M., Martín C., 2014. Sequential study of the genetic stability of callus and regenerated shoots in chrysanthemum. Prop. Orn. Plants 14, 57–67.
  • Morel G., Martín S., 1952. Guérison de dahlias atteints d’une maladie à virus. Comptes Rendus de l’Académie des Sciences 235, 1324–1325.
  • Mukherjee A.K., Dey A., Acharya L., Palai S.K., Panda P.C., 2013. Studies on genetic diversity in varieties of Chrysanthemum using RAPD and ISSR markers. Indian J. Biotech. 12, 161–169.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.
  • Pierik R.L.M., 1987. In vitro propagation of higher plants. Martínus Nizhoof Publishers, Boston.
  • Pinker I., Abdel-Rahman S.S.A., 2005. Artificial seeds for propagation of Dendranthema ×grandiflora (Ramat.). Prop. Orn. Plants 5(4), 186–191.
  • Pobudkiewicz A., 2014. Effect of growth retardant on some morphological and physiological traits of chrysanthemum. Pol. J. Nat. Sci. 29(4), 291–306.
  • Previati A., Banelli C., Da Re F., Giannini M., 2008. In vitro production of virus-free chrysanthemum stock plants for cut flowers. Prop. Orn. Plants 8(3), 167–169.
  • Read P., Preece J., 2007. Micropropagation of ornamentals: the wave of the future? Prop. Orn. Plants 7(3), 150–159.
  • Rout G.R., Mohapatra A., Jain S.M., 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnol. Adv. 24, 531–560.
  • Singh P., Chettri R., 2013. A new propagation method for rapid multiplication of chrysanthemum under in vivo conditions. Int. J. Conserv. Sci. 4(1), 95–100.
  • Solecka M., 1978. Chryzantemy. PWRiL, Warszawa. Stewart R.N., Dermen H., 1970. Somatic genetic analysis of the apical layers of chimeral sports in chrysanthemum by production of adventitious shoots. Am. J. Bot. 57(9), 1061–1071.
  • Stewart R.N., Meyer F.G., Dermen H., 1972. Camellia + ‘Daisy Eagleson’ a graft chimera of Camellia sasanqua and C. japonica. Am. J. Bot. 59(5), 515–524.
  • Sutter E., Langhans R.W., 1981. Abnormalities in chrysanthemum regenerated from long term cultures. Ann. Bot. 48(4), 559–568.
  • Szymkowiaki E.J., Sussex I.M., 1996. What chimeras can tell us about plant development. Ann. Rev. Plant Physiol. Mol. Biol. 47, 351–376.
  • Tanaka K., Kanno Y., Kudos S., Suzuki M., 2000. Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep. 19, 946–953.
  • Teixeira da Silva J.A., 2014. Novel factors affecting shoot culture of chrysanthemum (Dendranthema ×grandiflora). Botanica Lithuanica 20(1), 27–40.
  • Teixeira da Silva J.A., Shinoyama H., Aida R., Matsushita Y., Raj S.K., Chen F., 2013. Chrysanthemum Biotechnology, Quo vadis? Critical Rev. Plant Sci. 32, 21–52.
  • Trigiano R.N., Scott M.C., Caetano-Anollés G., 1998. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of Chrysanthemum. J. Am. Soc. Hortic. Sci. 123(4), 642–646.
  • Tymoszuk A., 2015. Hodowla chryzantemy wielkokwiatowej na drodze mutagenezy indukowanej promieniowaniem X i gamma. ZPPNR 582, 101–113.
  • Tymoszuk A., Zalewska M., 2014. In vitro adventitious shoots regeneration from ligulate florets in the aspects of application in chrysanthemum breeding. Acta Sci. Pol., Hort. Cult. 13(2), 45–58.
  • Waseem K., Jilani M.S., Jaskani M.J., Khan M.S., Kiran M., Khan G., 2011. Significance of different plant growth regulators on the regeneration of chrysanthemum plantlets (Dendranthema morifolium L.) through shoot tip culture. Pak. J. Bot. 43(4), 1843–1848.
  • Waseem K., Jilani M.S., Khan M.S., Kiran M., Khan G. 2013. Efficient in vitro regeneration of chrysanthemum (Chrysanthemum morifolium L.) plantlets from nodal segments. Afr. J. Biotech. 10(8), 1477–1484.
  • Waseem K., Khan M.Q., Jaskani J., Jilani M.S., Khan M.S., 2009. Effect of different auxins on the regeneration capability of chrysanthemum leaf discs. Int. J. Agric. Biol. 11, 468–472.
  • Watanabe G., 1977. Successful ovary culture and production of F1-hybrids and androgenic haploids in Japanese Chrysanthemum species. J. Heredity 68(5), 317–320.
  • Wolff K., Zietkiewicz E., Hofstra H., 1995. Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns. Theor. Appl. Genet. 91(3), 439–447.
  • Wróblewska W., Rudzki P., 2012. The production tendency of ornamental plants by tissue culture in Poland and the world. Ann. Univerisitatis Mariae Curie-Skłodowska 22(4), 18–27.
  • Zalewska M., Antkowiak M., Tymoszuk A., 2012. Micropropagation of Ajania pacifica (Nakai) Bremer et Humphries with single-node method. Nauka Przyroda Technologie 6, 1–6.
  • Zalewska M., Lema-Rumińska J., Miler N., 2007. In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Sci. Hortic. 113, 70–73.
  • Zalewska M., Lema-Rumińska J., Woźny A., 2002. Występowanie barwników w kwiatach języczkowatych chryzantemy wielkokwiatowej (Dendranthema grandiflora Tzvelev) w zależności od rodzaju pąka kwiatostanowego. ZPPNR 483, 291–297.
  • Zalewska M., Miler N., Tymoszuk A., Drzewiecka B., Winiecki J., 2010. Results of mutation breeding activity on Chrysanthemum ×grandiflorum /Ramat./ Kitam. in Poland. Electron. J. Polish Agric. Univ. 13(4) #27.
  • Zhao E.H., Liu Z.H., Hu X., Yin J.L., Li W., Rao G.Y., Zhang X.H., Huang C.L., Anderson N., Zhang Q.X., Chen J.Y., 2009. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genet. Res. Crop Evol. 56, 937–946.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4e4a2ef3-b4eb-44fe-b971-f4b9f605b5bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.