PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 2 |

Tytuł artykułu

Beyond the Amazon forest: richness and abundance of bats in the understory of savannahs, campinaranas and terra firme forest

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Amazon region is made up of a mosaic of important habitats scattered throughout the rainforests, which differ in vegetation structure, basal area, primary productivity, biomass and production of flowers and fruits. Consequently, species richness and abundance also vary between these habitat types, in part explaining the high levels of richness found in the Amazon region. Here, we sampled bats using mist nets in three Amazonian habitats to explore variation in richness, abundance and community composition between habitats and seasons, and test for variation in the number and composition of bats captured in different mist net shelves. Overall abundance was highest in Amazonian savannahs, which is probably due to these habitats being more complex at the landscape scale — being composed of areas of savannah interspersed with forest fragments, gallery forests and palm stands. Abundance was also higher in the rainy season in savannahs and terra firme forest, and in the dry season in campinarana. In all habitats, bats were most frequently captured between 0.7 and 2.4 m from the ground. These results have important implications for our understanding of the ecology of, and habitat use by bats in the Amazon, particularly in the less well-studied habitat types of Amazonian savannah and campinarana. In addition, knowledge of the distribution of bat captures between mist net shelves serves to highlight that nets need not be set so close to the ground to maintain sampling efficiency, which is important as it may help to reduce opportunistic predation events of individuals caught in the lowest mist net shelf.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.407-419,fig.,ref.

Twórcy

  • Programa de Pos-Graduacao em Biodiversidade Tropical, Universidade Federal do Amapa, Rodovia Juscelino Kubitscheck, S/N, Jardim Marco Zero 68903-419, Macapa, Amapa, Brazil
  • Laboratorio de Mastozoologia, Departamento de Biologia Animal, Instituto de Ciencias Biologicas e da Saude, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, 23890-000, Seropedica, Rio de Janeiro, Brazil
  • Laboratorio de Mamíferos, Instituto de Pesquisas Cientificas e Tecnologicas do Estado do Amapa, Rodovia Juscelino Kubitscheck, Km 10, CEP 68912-250, Macapa, Amapa, Brazil
autor
  • Departamento de Zoologia, Instituto de Ciencias Biologicas, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, Distrito Federal, Brazil
  • Laboratorio de Diversidade de Morcegos, Departamento de Biologia Animal, Instituto de Ciencias Biologicas e da Saude, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, 23890-000, Seropedica, Rio de Janeiro, Brazil
autor
  • Institute of Biological and Environmental Sciences, Zoology Building, University Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TE, Scotland, United Kingdom

Bibliografia

  • 1. Adeney, J. M., N. L. Christensen, A. Vicentini, and M. Cohnhaft. 2016. White-sand ecosystems in Amazonia. Biotropica, 48: 7–23. Google Scholar
  • 2. Aguirre, L. F. 2002. Structure of a Neotropical savanna bat community. Journal of Mammalogy, 83: 775–784. Google Scholar
  • 3. Anderson, A. B. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica, 13: 199–210. Google Scholar
  • 4. Aragão, L., Y. Malhi, D. Metcalfe, J. E. Silva-Espejo, E. Jiménez, D. Navarrete, S. Almeida, A. Costa, N. Salinas, and O. L. Phillips. 2009. Above-and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 6: 2759–2778. Google Scholar
  • 5. Baker, T. R., O. L. Phillips, Y. Malhi, S. Almeida, L. Arroyo, A. Di Fiore, T. Erwin, T. J. Killeen, S. G. Laurance, and W. F. Laurance. 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10: 545–562. Google Scholar
  • 6. Barbosa, R. I., and I. Miranda. 2005. Diversidade de savanas de Roraima. Ação Ambiental, 8: 19–23. Google Scholar
  • 7. Barnett, A. A., E. M. Sampaio, E. K. V. Kalko, R. L. Shapley, E. Fischer, G. Camargo, and B. Rodríguez-Herrera. 2006. Bats of Jaú National Park, central Amazônia, Brazil. Acta Chiropterologica, 8: 103–128. Google Scholar
  • 8. Bernard, E. 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. Jounal of Tropical Ecology, 17: 115–126. Google Scholar
  • 9. Bernard, E. 2002. Diet, activity and reproduction of bat species (Mammalia, Chiroptera) in Central Amazonia, Brazil. Revista Brasileira Zoologia, 19: 173–188. Google Scholar
  • 10. Bernard, E., and M. B. Fenton. 2002. Species diversity of bats (Mammalia: Chiroptera) in forest fragments, primary forests, and savannas in central Amazonia, Brazil. Canadian Journal of Zoology, 80: 1124–1140. Google Scholar
  • 11. Bernard, E., V. C. Tavares, and E. Sampaio. 2011b. Compilação atualizada das espécies de morcegos (Chiroptera) para a Amazonia Brasileira. Biota Neotropica, 11: 35–46. Google Scholar
  • 12. Bernard, E., L. Aguiar, and R. B. Machado. 2011a. Discovering the Brazilian bat fauna: a task for two centuries? Mammal Review, 41: 23–39. Google Scholar
  • 13. Bobrowiec, P. E. D., and V. C. Tavares. 2017. Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon. PLoS ONE, 12: e0183036. Google Scholar
  • 14. Bobrowiec, P. E. D., L. S. Rosa, J. Gazarini, and T. Haugaasen. 2014. Phyllostomid bat assemblage structure in Amazonian flooded and unflooded forests. Biotropica, 46: 312–321. Google Scholar
  • 15. Borges, S. H. 2004. Species poor but distinct: bird assemblages in white sand vegetation in Jaú National Park, Brazilian Amazon. Ibis, 146: 114–124. Google Scholar
  • 16. Borges-Matos, C., S. Aragón, M. N. F. Silva, M.-J. Fortin, and W. E. Magnusson. 2016. Importance of the matrix in determining small-mammal assemblages in an Amazonian forest-savanna mosaic. Biological Conservation, 204: 417–425. Google Scholar
  • 17. Brazil. 1974. Projeto Radam – Folha NA/NB.22-Macapá: Geologia, geomorfologia, solos, vegetação e uso potencial da terra. Departamento de Produção Mineral, Rio de Janeiro, Brazil, 467 pp. Google Scholar
  • 18. Bredt, A., W. Uieda, and W. Pedro. 2012. Plantas e morcegos na recuperação de áreas degradadas e na paisagem urbana. Rede de Sementes do Cerrado, Brasília, Brazil, 276 pp. Google Scholar
  • 19. Breviglieri, B., C. Paulo, and W. A. Pedro. 2010. Predação de morcegos (Phyllostomidae) pela cuíca d'água Chironectes minimus (Zimmermann, 1780) (Didelphimorphia, Didelphidae) e uma breve revisão de predação em Chiroptera. Chiroptera Neotropical, 16: 732–739. Google Scholar
  • 20. Capaverde, U. D., Jr. , L. G. A. Pereira, V. C. Tavares, W. E. Magnusson, F. B. Baccaro, and P. E. D. Bobrowiec. 2018. Subtle changes in elevation shift bat-assemblage structure in Central Amazônia. Biotropica, 50: 674–683. Google Scholar
  • 21. Carvalho, W. D., and K. Mustin. 2017. The highly threatened and little known Amazonian savannahs. Nature Ecology and Evolution, 1: 0100. Google Scholar
  • 22. Carvalho, W. D., D. Norris, and F. Michalski. 2016. Opport unistic predation of a common scale-backed antbird (Willisornis poecilinotus) by a Goliath bird-eating spider (Thera phosa blondi) in the Eastern Brazilian Amazon. Studies on Neotropical Fauna and Environment, 51: 239–241. Google Scholar
  • 23. Castanho, A., M. Coe, M. Costa, Y. Malhi, D. Galbraith, and C. Quesada. 2013. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 10: 2255. Google Scholar
  • 24. Castro, I. J. 2009. Assembléia de morcegos (Mammalia: Chiroptera) da Área de Proteção Ambiental do Rio Curiaú, Amapá. M.Sci. Thesis, Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá, Amapá, Brazil, 72 pp. Google Scholar
  • 25. Castro, I. J., E. R. Santos, A. C. M. Martins, D. Dias, and A. L. Peracchi. 2012. First record of the pale-winged doglike bat Peropteryx pallidoptera (Chiroptera: Emballonuridae) for Brazil. Mammalia, 76: 451–453. Google Scholar
  • 26. Chao, A. 2005. Species estimation and applications. Pp. 7907–7916, in Encyclopedia of statistical sciences ( N. Balak Rishman, C. B. Read, and B. Vidakovic, eds.). Wiley Press, New York, NY, 9686 pp. Google Scholar
  • 27. Chao, A., and C. H. Chiu. 2016. Nonparametric estimation and comparison of species richness. In eLS. John Wiley & Sons, Ltd, Chichester, 11 pp. Google Scholar
  • 28. Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell, and A. M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Mono graphs, 84: 45–67. Google Scholar
  • 29. Clarke, K. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18: 117–143. Google Scholar
  • 30. Coe, M. T., P. M. Brando, L. A. Deegan, M. N. Macedo, C. Neill, and D. V. Silvério. 2017. The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Tropical Conservation Science, 10: 1–6. Google Scholar
  • 31. Costa-Neto, S. V. 2014. Fitofisionomia e florística de savanas do Amapá. Ph.D. Thesis, Programa de Pós-Graduação em Ciências Agrárias, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil, 100 pp. Google Scholar
  • 32. Dirzo, R., and P. H. Raven. 2003. Global state of biodiversity and loss. Annual Review of Environment and Resources, 28: 137–167. Google Scholar
  • 33. Duellman, W. 1988. Patterns of species diversity in Neotropical anurans. Annals of the Missouri Botanical Garden, 75: 79–104. Google Scholar
  • 34. Faria, D. 2006. Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest, Brazil. Journal of Tropical Ecology, 22: 531–542. Google Scholar
  • 35. Ferreira, D. F., R. Rocha, A. López-Baucells, F. Z. Farneda, J. Carreiras, J. M. Palmeirim, and C. F. Meyer. 2017. Season-modulated responses of Neotropical bats to forest fragmentation. Ecology and Evolution, 7: 4059–4071. Google Scholar
  • 36. Ferreira, L. V., M. C. Thales, J. L. G. Pereira, J. A. M. Fernandes, C. S. Furtado, and P. P. Chaves. 2010. Biodiversidade. Pp. 25–102, in Zoneamento ecológico-econômico da Zona Leste e Calha Norte do Estado do Pará: diagnóstico do meio físico-biótico ( M. A.Monteiro , C. R. C. Menezes, and I. M. F. Galvão, eds.). Núcleo de Gerenciamento do Programa Pará Rural2, Belém, Pará, Brazil, 326 pp. Google Scholar
  • 37. Ferreira, L. V., P. P. Chaves, D. A. Cunha, A. Rosário, and P. Parolin. 2013. A extração ilegal de areia como causa do desaparecimento de campinas e campinaranas no estado do Pará, Brasil. Pesquisas, Botânica, 64: 157–173. Google Scholar
  • 38. Gama, J. R. V., A. L. Souza, S. V. Martins, and D. R. Souza. 2005. Comparação entre florestas de várzea e de terra firme do Estado do Para. Revista Árvore, 29: 607–616. Google Scholar
  • 39. Gardner, A. L. (ed.) 2007 [2008]. Mammals of South America. Vol ume 1: marsupials, xenarthrans, shrews, and bats. University of Chicago Press, Chicago, Illinois, xx + 669 pp. Google Scholar
  • 40. Gomes, L. A. C., A. Pires, M. A. Martins, E. C. Lourenço, and A. L. Peracchi. 2015. Species composition and seasonal variation in abundance of Phyllostomidae bats (Chiroptera) in an Atlantic Forest remnant, southeastern Brazil. Mammalia, 76: 61–68. Google Scholar
  • 41. Guimarães, F. S., and G. T. Bueno. 2016. As campinas e campinaranas Amazônicas. Caaderno de Geografia, 26: 113–133. Google Scholar
  • 42. Hammer, Ø., D. Harper, and P. Ryan. 2008. PAST — palaeontological statistics, ver. 1.89. Paleontologia Electronica, 4: 1–9. Google Scholar
  • 43. Hurtado, N., and V. Pacheco. 2014. Análisis filogenético del género Mimon Gray, 1847 (Mammalia, Chiroptera, Phyllostomidae) con la descripción de un nuevo género. Therya, 5: 751–791. Google Scholar
  • 44. Kalko, E. K. V. 1998. Organisation and diversity of tropical bat communities through space and time. Zoology, 101: 281–297. Google Scholar
  • 45. Kalko, E. K. V., and C. O. Handley, Jr . 2001. Neotropical bats in the canopy: diversity, community structure, and implications for conservation. Plant Ecology, 153: 319–333. Google Scholar
  • 46. Kalko, E. K. V., C. O. Handley, Jr. , and D. Handley. 1996. Organization, diversity, and long-term dynamics of a Neotropical bat community. Pp. 503–553, in Long-term studies in vertebrate communities ( M. Cody and J. Smallwood, eds.). Academic Press, Los Angeles, CA, 597 pp. Google Scholar
  • 47. Klingbeil, B. T., and M. R. Willig. 2010. Seasonal differences in population, ensemble and community-level responses of bats to landscape structure in Amazonia. Oikos, 119: 1654–1664. Google Scholar
  • 48. Lambert, T. D., J. R. Malcolm, and B. L. Zimmerman. 2006. Amazonian small mammal abundances in relation to habitat structure and resource abundance. Journal of Mammalogy, 87: 766–776. Google Scholar
  • 49. Lees, A. C., and C. A. Peres. 2008. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology, 22: 439–449. Google Scholar
  • 50. Lewinsohn, T. M., and P. I. Prado. 2005. How many species are there in Brazil? Conservation Biology, 19: 619–624. Google Scholar
  • 51. Lim, B. K., and M. D. Engstrom. 2001. Species diversity of bats (Mammalia: Chiroptera) in Iwokrama Forest, Guyana, and the Guianan subregion: implications for conservation. Biodiversity and Conservation, 10: 613–657. Google Scholar
  • 52. Loayza, A. P., and B. A. Loiselle. 2009. Composition and distribution of a bat assemblage during the dry season in a naturally fragmented landscape in Bolivia. Journal of Mammalogy, 90: 732–742. Google Scholar
  • 53. López-Baucells, A., R. Rocha, P. Bobrowiec, E. Bernard, J. Palmeirim, and C. Meyer. 2016. Field guide to Amazonian bats. Editora INPA, Manaus, Brazil, 168 pp. Google Scholar
  • 54. Lourenço, E. C., L. A. C. Gomes, M. D. C. Pinheiro, P. M. P. Patrício, and K. M. Famadas. 2014. Composition of bat assemblages (Mammalia: Chiroptera) in tropical riparian forests. Zoologia, 31: 361–369. Google Scholar
  • 55. Maas, A., L. A. C. Gomes, M. A. Martins, D. Dias, A. Pol, F. G. Chaves, M. Schutte, R. M. Araújo, and A. L. Peracchi. 2018. Bats in a Cerrado landscape of Northern Brazil: species occurrence influence of environmental heterogeneity and seasonality, and eight new records for the State of Tocantins. Mammalia, 82: 469–480. Google Scholar
  • 56. MacArthur, R. H., and J. W. MacArthur. 1961. On bird species diversity. Ecology, 42: 594–598. Google Scholar
  • 57. Magnusson, W. E., A. P. Lima, R. Luizão, F. Luizão, F. R. C. Costa, C. V. D. Castilho, and V. F. Kinupp. 2005. RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica, 5: 19–24. Google Scholar
  • 58. Martins, A. C., M. R. Willig, S. J. Presley, and J. Marinho-Filho. 2017. Effects of forest height and vertical complexity on abundance and biodiversity of bats in Amazonia. Forest Ecology and Management, 391: 427–435. Google Scholar
  • 59. McFarland, B. J. 2017. Tropical rainforest ecology. Pp. 59–72, in Conservation of tropical rainforests ( B. J. Mcfarland, ed.). Studies in Environmental Policy and Regulation, Palgrave Macmillan, Cham, 680 pp. Google Scholar
  • 60. Meyer, C. F. J., M. J. Struebig, and M. R. Willig. 2016b. Responses of tropical bats to habitat fragmentation, logging, and deforestation. Pp. 63–103, in Bats in the Anthropocene: conservation of bats in a changing world ( C. C. Voigt and T. Kingston, eds.). Springer International Publishing, Cham, 606 pp. Google Scholar
  • 61. Moraes, B. C., J. M. N. Costa, A. C. L. Costa, and M. H. Costa. 2005. Variação espacial e temporal da precipitação no estado do Para. Acta Amazonica, 35: 207–217. Google Scholar
  • 62. Muscarella, R., and T. H. Fleming. 2007. The role of frugivorous bats in tropical forest succession. Biological Reviews, 82: 573–590. Google Scholar
  • 63. Mustin, K., W. D. Carvalho, R. R. Hilário, S. V. Costa-Neto, C. R. Silva, I. M. Vasconcelos, I. J. Castro, V. Eilers, E. E. Kauano, R. N. G. Mendes-Junior , et al. 2017. Biodiversity, threats and conservation challenges in the ‘Cer-rado of Amapá’, an Amazonian savanna. Nature Conservation, 22: 107–127. Google Scholar
  • 64. Myster, R. W. 2009. Plant communities of western Amazonia. Botanical Review, 75: 271–291. Google Scholar
  • 65. Neckel-Oliveira, S., W. E. Magnusson, A. P. Lima, and A. L. Albernaz. 2000. Diversity and distribution of frogs in an Amazonian savanna in Brazil. Amphibia-Reptilia, 21: 317–326. Google Scholar
  • 66. Nogueira, M. R., I. P. Lima, R. Moratelli, V. C. Tavares, R. Gregorin, and A. L. Peracchi. 2014. Checklist of Brazilian bats, with comments on original records. Check List, 10: 808–821. Google Scholar
  • 67. Oksanen, J., R. Kindt, P. Legendre, B. O'Hara, M. H. H. Stevens, M. J. Oksanen, and M. Suggests. 2007. The vegan package: community ecology package. R package version 2.4.5. Available at https://cran.r-project.org/web/packages/vegan/index.html. Accessed on December 10, 2017. Google Scholar
  • 68. Oliveira, A. N., and I. L. Amaral. 2004. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica, 34: 21–34. Google Scholar
  • 69. Oliveira, L. Q., R. Marciente, W. E. Magnusson, and P. E. D. Bobrowiec. 2015. Activity of the insectivorous bat Pteronotus parnellii relative to insect resources and vegetation structure. Jounal of Mammalogy, 96: 1036–1044. Google Scholar
  • 70. Paredes, O. S. L., D. Norris, T. G. Oliveira, and F. Michalski. 2017. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLoS ONE, 12: e0174049. Google Scholar
  • 71. Pires, J. M. , and G. T. Prance. 1985. The vegetation types of the Brazilian Amazon. Pp. 109–145, in Key environments: Amazonia ( G. T. Prance and T. E. Lovejoy, eds.). Pergamon Press, Oxford, UK, 442 pp. Google Scholar
  • 72. Prance, G. T. 1996. Islands in Amazonia. Philosophical Transactions of the Royal Society, 351B: 823–833. Google Scholar
  • 73. Prance, G. T., W. A. Rodrigues, and M. F. Silva. 1976. Inventário florestal de um hectare de mata de terra firme km 30 da estrada Manaus-Itacoatiara. Acta Amazonica, 6: 9–35. Google Scholar
  • 74. R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.r-project.org. Accessed on September 5, 2017. Google Scholar
  • 75. Rahbek, C., and G. R. Graves. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences of the USA, 98: 4534–4539. Google Scholar
  • 76. Ramalho, W. P., M. Silveira Susçuarana, J. J. López-Rojas, L. V. Rocha, E. C. Keppeler, and L. J. S. Vieira. 2014. Impact of siltation on fish diversity in streams of a campinarana vegetational complex in northwestern Brazil. Neotropical Biology and Conservation, 9: 105–114. Google Scholar
  • 77. Ramos Pereira, M. J., J. T. Marques, and J. M. Palmeirim. 2010a. Ecological responses of frugivorous bats to seasonal fluctuation in fruit availability in Amazonian forests. Biotropica, 42: 680–687. Google Scholar
  • 78. Ramos Pereira, M. J., J. T. Marques, and J. M. Palmeirim. 2010b. Vertical stratification ofbat assemblages in flooded and unflooded Amazonian forests. Current Zoology, 56: 469–478. Google Scholar
  • 79. Rocha, R., O. Ovaskainen, A. López-Baucells, F. Z. Farneda, D. F. Ferreira, P. E. Bobrowiec, M. Cabeza, J. M. Palmeirim, and C. F. Meyer. 2017. Design matters: an evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design. Forest Ecology and Management, 401: 8–16. Google Scholar
  • 80. Sanaiotti, T. M., and W. E. Magnusson. 1995. Effects of annual fires on the production of fleshy fruits eaten by birds in a Brazilian Amazonian savanna. Journal of Tropical Ecology, 11: 53–65. Google Scholar
  • 81. Santos-Filho, M., C. A. Peres, D. J. Silva, and T. M. Sanaiotti. 2012. Habitat patch and matrix effects on smallmammal persistence in Amazonian forest fragments. Biodiversity and Conservation, 21: 1127–1147. Google Scholar
  • 82. Schnitzler, H.-U., and E. K. V. Kalko. 2001. Echolocation by insect-eating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. Bioscience, 51: 557–569. Google Scholar
  • 83. Sikes, R. S., W. L. Gannon, and The Animal Care and Use Committee of the American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 84. Silva, C. R., A. C. M. Martins, I. J. Castro, E. Bernard, E. M. Cardoso, D. S. Lima, R. Gregorin, R. V. Rossi, A. R. Percequillo, and K. Cruz Castro. 2013. Mammals of Amapá State, Eastern Brazilian Amazonia: a revised taxonomic list with comments on species distributions. Mammalia, 77: 409–424. Google Scholar
  • 85. Silva, J. M. C., A. B. Rylands, and G. A. B. Fonseca. 2005. The fate of the Amazonian areas of endemism. Conservation Biology, 19: 689–694. Google Scholar
  • 86. Silva, S. S., D. Dias, M. A. Martins, P. G. Guedes, J. C. Almeida, A. P. Cruz, N. M. Serra-Freire, J. S. Damascena, and A. L. Peracchi. 2015. Bats (Mammalia: Chiroptera) from the caatinga scrublands of the Crateus region, northeastern Brazil, with new records for the state of Ceará. Mastozoología Neotropical, 22: 335–348. Google Scholar
  • 87. Siqueira-Souza, F. K., C. E. Freitas, L. E. Hurd, and M. Petrere, Jr . 2016. Amazon floodplain fish diversity at different scales: do time and place really matter? Hydro biologia, 776: 99–110. Google Scholar
  • 88. Souza, E., and A. Cunha. 2010. Climatologia de precipitação no Amapá e mecanismos climáticos de grande escala. Pp. 177–195, in Tempo, clima e recursos hídricos: resultados do projeto REMETAP no Estado do Amapá ( A. C. Cunha, E. B. Souza, and H. F. A. Cunha, eds.). Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá — IEPA, Macapá, Amapá, Brazil, 216 pp. Google Scholar
  • 89. Spotswood, E. N., K. R. Goodman, J. Carlisle, R. L. Cormier, D. L. Humple, J. Rousseau, S. L. Guers, and G. G. Barton. 2012. How safe is mist netting? Evaluating the risk of injury and mortality to birds. Methods in Ecology and Evolution, 3: 29–38. Google Scholar
  • 90. Straube, F. C., and G. V. Bianconi. 2002. Sobre a grandeza e a unidade utilizada Pará estimar esforço de captura comutilização de redes-de-neblina. Chiroptera Neotropical, 8: 150–152. Google Scholar
  • 91. Swann, A. L., M. Longo, R. G. Knox, E. Lee, and P. R. Moorcroft. 2015. Future deforestation in the Amazon and consequences for South American climate. Agricultural and Forest Meteorology, 214: 12–24. Google Scholar
  • 92. Tavares, V. C., C. C. Nobre, C. F. S. Palmuti, E. P. Nogueira, J. D. Gomes, M. H. Marcos, R. F. Silva, S. G. Farias, and P. E. Bobrowiec. 2017. The bat fauna from southwestern Brazil and its affinities with the fauna of western Amazon. Acta Chiropterologica, 19: 93–106. Google Scholar
  • 93. Vasconcelos, H. L., and J. Vilhena. 2006. Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: a comparison of forests and savannas. Biotropica, 38: 100–106. Google Scholar
  • 94. Vasconcelos, M. F., S. M. Dantas, and J. M. C. Silva. 2011. Avifaunal inventory of the Amazonian savannas and adjacent habitats of the Monte Alegre region (Pará, Brazil), with comments on biogeography and conservation. Boletim do Museu Paraense Emílio Goeldi Ciências Humanas, 6: 119–145. Google Scholar
  • 95. Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison , et al. 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351: 128–129. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-4e276911-3bfe-4f59-80f8-e14ee748dafe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.