PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 58 | 2 |

Tytuł artykułu

Microbial transformation of alpha-naphthol by Aspergillus niger -PTCC 5011

Treść / Zawartość

Warianty tytułu

PL
Transformacja mikrobiologiczna alfa-naftolu przez Aspergillus niger - PTCC 5011

Języki publikacji

EN

Abstrakty

EN
The metabolism of α-naphthol by Aspergillus niger PTCC 5011, a fungi isolated in Ardebil, Iran, from industrial wastewater, was studied. A. niger metabolized approximately 80% of α-naphthol within 5 days. The identification and quantification of degradation products using GC-MS demonstrated that approximately 41% of the parent compound was converted into 1-ethyl-2-methyl benzene, 7.43% was converted into acetonaphthone, 5.55% was transformed into 4-hydroxy-1-naphthyl sulfate, 3% into 1,4-naphthoquinone, and about 6.68% into 2-phenyl-1,2,3-tetrahydro-1-naphthol. These results support a role for A. niger in affecting the environmental fat of pollutants in ecosystems.
PL
Badano przetwarzanie α-naftolu za pomocą Aspergillus niger PTCC 5011, grzyba wyizolowanego ze ścieków przemysłowych pochodzących z Ardebil w Iranie. Kropidlak czarny metabolizował około 80% α-naftolu w ciągu pięciu dni. Identyfikacja i ocena jakościowa produktów degradacji za pomocą GC/MS wykazała, że około 41% związku macierzystego zostało przetworzone na 1-etyl-2-metylobenzen, 7,43% na acetonafton, 5,55% zostało przekształcone w 4-hydroksy-1-naftylosulfat, 3% w naftochinon i około 6,68% w 2-fenyl- 1,2,3-tetrahydro-1-naftol. Takie wyniki mogą pomóc znaleźć zastosowanie A. niger do regulacji wpływu zanieczyszczeń typu tłuszczowego, które istnieją w ekosystemach.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.38-46,fig.,ref.

Twórcy

autor
  • Department of chemical Engineering, North TeheranBranch, Islamic Azad University, P.O.Box 19585-936, tehran, Iran
autor
autor

Bibliografia

  • 1. Akta N, Cicek H, Unal AT, Kibarer U, Kolankaya N, Tanyolaç A. Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Bioresource Tech 2001; 80:29–36.
  • 2. Allen CCR, Boyd DR, Larkin MJ, Reid AK, Sharma DN, Wilson K. Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus spp. strain NCIMB 12038. Appl and Env Microb 1996; 63:151–155.
  • 3. Anonymous A. Sevin insecticide for abundant food and fibre. Technical Information Bulletin, Union Carbide.1974.
  • 4. Augustin T, Schlosser D, Baumbach R, Schmidt J, Grancharov K, Krauss G, Krauss GJ. Biotransformation of α-naphthol by a strictly aquatic fungus. Current Microb 2005;52: 216–220.
  • 5. Cerniglia CE, Althaus JA, Evans FE, Freeman JP, Mitchum RK, Yang SK. Stereochemistry and evidence for an arene oxide-NIH pathway in the fungal metabolism of naphthalene. Chem Biol Inter 1983; 44:119– 132.
  • 6. Cerniglia CE, Freeman JP, Evans FE. Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to α-naphthol by Bacillus cereus. Arch Microbiol 1984; 138:283–286.
  • 7. Cerniglia CE, Sutherland JB. Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: Gadd, G. M. (ed.) British Mycological Society Symposium Series, Fungi in Bioremedation. Cambridge 2001:136.
  • 8. Crosby DG, Leitis E, Winterlin WL. Photo decomposition of carbamate insecticides. J Agric Food Chem 1965; 13:204-207.
  • 9. Da Silva M, Esposito E, Moody JD, Canhos VP, Cerniglia CE. Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium spp. Chemosphere 2004; 57:934–952.
  • 10. Doddamani HP, Ninnekar HZ. Biodegradation of Carbaryl by a Micrococcus species. Current Microb 2001; 43:69–73.
  • 11. Esmaeili A, Saad N, Safaiyan S, Rustaiyan A. Biotransformation of (-)-menthol by spores of Mucor ramannianus and study of the pathways involved. Herba Pol 2009; 56(2):51–57.
  • 12. Esmaeili A, Hoseiny Zarea A, Sharafian S, Safaiyan S, Rustaiyan A, Biotransformation of menthol by sporulated surface cultures of Penicillium spp. and study of the pathways involved. Herba Pol 2009; 55(1):78–83.
  • 13. Esmaeili A, Sharafian S, Safaiyan S, Rezazadeh S, Rustaiyan A. Biotransformation of one monoterpene by sporulated surface cultures of Aspergillusniger and Penicillium spp. Nat Prod Res 2009; 23:1058–1061.
  • 14. Hasegawa Y, Okamoto T, Obata H, Tokuyama T. Utilization of aromatic compounds by Trichosporon cutaneum. KUY 1990; 69:122–126.
  • 15. Hidalgo C, Sancho JV, Roig-Navarro A, Hernandez F. Rapid determination of carbaryl and α-naphthol at ppt levels in environmental water samples by automated on-line SPE-LC-DAD-FD. Chromatographia 1998; 47:596–600.
  • 16. Joshi AA, Locke BRP, Finney WC. Formation of hydroxyl radicals, hydrogen peroxide and aqueous lectrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 1995; 41:3–30.
  • 17. Leuenberger HGW. Methodology. In: Kieslich, K. (ed.). Biotransformations, vol. 6A. Weinheim 1984:5.
  • 18. Mastrangela G, Fadda E, Marzia V. Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 1997; 104:1166–1170. Microbial transformation of α-naphthol by Aspergillus niger – PTCC 5011
  • 19. Muncnerova D, Augustin J. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresour Technol 1994; 48:97–106.
  • 20. Preuss R, Angerer J, Drexler H. Naphthalene—an environmental and occupational toxicant. International Archives of Occupat and Env Health 2003; 76:556–576.
  • 21. Samanta SK, Chakraborti AK, Jain RK. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 1999; 53:98–107.
  • 22. Sikka HC, Miyazaki S, Lynch RS. Degradation of Carbaryl and α-naphthol by marine microorganisms. Bulletin of Env Contam & Toxicol 1975; 13(6):666–672.
  • 23. Zang S, Lian B. Synergistic degradation of 2-naphthol by Fusarium proliferatum and Bacillus subtilis in wastewater. J Hazard Mat 2008; 166:33–38.
  • 24. Esmaeili A, Hashemi E. Biotransformation of myrcene by Pseudomonas aeruginosa. Chem Central J 2011; 5:26–34.
  • 25. Esmaeili A, Hashemi E, Safaiyan SH, Rustaiyan A. Biotransformation of myrcene by Pseudomonas putida PTCC 1694. Herba Pol 2011; 57(1):51–58.
  • 26. Esmaeili A, Hashemi E, Safaiyan SH, Rustaiyan A. Biotransformation of germacranolide from Onopordon leptolepies by Aspergillus niger. Pak J Pharm Sci 2012; 25(1):155-159.
  • 27. Esmaeili A, Khodadadi A. Antioxidant activity of a solution of thymol in ethanol. Zahedan Uniof Med Sci and Health Ser 2012; 14(7):14-18.
  • 28. Esmaeili A, Khodadadi A, Safaiyan S. Biotransformation of thymol by Aspergillus niger. Chem Nat Com 2012; 47(6):966-968.
  • 29. Esmaeili A, Saremnia B, Koohian A, Rezazadeh S. Mechanism of nanocapsules of Matricaria recutita extract formation by the emulsion-diffusion process. Superlattices and Microstructures 2011; 50:340– 349.
  • 30. Esmaeili A, Saremnia B. Preparation of extract-loaded nanocapsules from Onopordon leptolepis DC. Ind Crops and Prod 2012; 37:259–263.
  • 31. Esmaeili A, Kalantari M. Bioremoval of an azo textile dye, Reactive Red 198, by Aspergillus flavus. World J Microbiol Biotechnol 2012; 28:1125–1131.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4d982e55-54e1-4c64-8310-3dd2a5bcbc5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.