Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2017 | 78 |

Tytuł artykułu

Leaf litterfall decomposition of pedunculate (Quercus robur L.) and sessile (Q. petraea [Matt.] Liebl.) oaks and their hybrids and its impact on soil microbiota


Treść / Zawartość

Warianty tytułu

Języki publikacji



Trakas Forest is the only natural habitat of sessile oak in Lithuania. Sessile oak stand here is growing about 60–70 km from the nearest natural sessile oak stands in Poland. The purpose of this study was to determine whether autumn leaf litterfall of pedunculate and sessile oaks and their hybrids have different biochemical composition and decomposition rate and, consequently, different impacts on microbial condition of rhizosphere. For this purpose in autumn leaf litterfall C, N, P, K, Ca, Mg, lignin, ash, fat, crude fibre and water-soluble carbohydrates contents and stocks, lignin/N, lignin/P, C/N, C/P, N/P ratios, the decomposition rate and CO2 emissions were determined. In rhizosphere of studied oak species N, C concentration, pHH2O, C/N ratio, and dehydrogenase, urease, phosphatase, bacteria and micromycetes amount were estimated as well. The litterfall of pedunculate oak was distinguished by a higher content of lignin, higher lignin/N ratio, lower decay rate and lower carbon release, which determines decreased activity of micromycetes in the rhizosphere. Metabolic activity of microorganisms differed insignificantly among tree species rhizospheres. However, the potential for the use of carbon compound substrates and biodiversity index have a tendency to be higher in the soil under sessile oak. Lower decomposition rate of leaf litterfall and organic compounds in the rhizosphere under pedunculate oak allowed to suppose that the conditions for natural regeneration were more suitable in stands where sessile and hybrid oaks dominate.

Słowa kluczowe







Opis fizyczny




  • Aas G (1993) Taxonomical impact of morphological variation in Quercus robur and Q. petraea: a contribution to the hybrid controversy. Annales des Sciences Forestières 50: 107–113.
  • Amador JA, Glucksman AM, Lyons JB & Görres JH (1997) Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science 162: 808–825.
  • Aon MA, Cabello MN, Sarena DE, Colaneri AC, Franco MG, Burgos JL & Cortassa S (2001) I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Applied Soil Ecology 18: 239–254.
  • Ayres E, Dromph KM & Bardgett RD (2006) Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biology and Biochemistry 38: 183–186.
  • Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T & Valášková V (2013) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry 56: 60–68.
  • Baldrian P & Štursová M (2011) Enzymes in forest soils: Soil enzymology (ed. by G Shukla & A Varma) Soil biology 22, Springer, Berlin, Heidelberg, pp. 61–73. doi:10.1007/978-3-642-14225-3_4.
  • Baliuckas V (2000) Paprastojo (Quercus robur) ir bekočio ąžuolo (Q. petraea) rūšių introgresija Trako miške (Introgression of pedunculate (Quercus robur) and sessile (Q. petraea) oak species in Trakas forest. Botanica Lithuanica 6: 375–387.
  • Bolton H, Elliott LF, Papendick RI & Bezdicek DF (1985) Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology and Biochemistry 17: 297–302.
  • Carlisle A & Brown AMF (1965) The assessment of the taxonomic status of mixed oaks (Quercus ssp.) populations. Watsonia 6: 120–127.
  • Chávez-Vergara B, Rosales-Castillo A, Merino A, Vázquez-Marrufo G, Oyama K & García-Oliva F (2016) Quercus species control nutrients dynamics by determining the composition and activity of the forest floor fungal community. Soil Biology and Biochemistry 98: 186–195.
  • Criquet S, Ferre E, Farnet AM & Le Petit J (2004) Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biology and Biochemistry 36: 1111–1118.
  • Criquet S, Tagger S, Vogt G & Le Petit J (2002) Endoglucanase and b-glycosidase activities in an evergreen oak litter: annual variation and regulating factors. Soil Biology and Biochemistry 34: 1111–1120.
  • Das SK & Varma A (2011) Role of enzymes in maintaining soil health: Soil enzymology (ed. by G Shukla & A Varma) Soil biology 22, Springer, Berlin, Heidelberg, pp. 25–42. doi:10.1007/978-3-642-14225-3_2.
  • DIN-ISO 13878 (1998) Bodenbeschaffenheit – Bestimmung des Gesamt-Stickstoffs durch trockene Verbrennung (Elementaranalyse). Beuth, Berlin, Wien, Zürich.
  • Edmonds RL (1979) Decomposition and nutrient release in Douglas-fir needle litter in relation to stand development. Canadian Journal of Forest Research 9: 132–140.
  • Edmonds RL (1980) Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Canadian Journal of Forest Research 10: 327–337.
  • Galvonaitė A, Kilpys J, Kitrienė Z & Valiukas D (2013) Vudutinių klimatinių rodiklių reikšmės Lietuvoje 1981–2010 m./Climate average for Lithuania 1981–2010.
  • Gosz JR, Likens GE & Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecological monographs 43: 173–191.
  • Guan SY (1989) Studies on the factors influencing soil enzyme activities: I. Effects of organic manures on soil enzyme activities and N and P transformations. Acta Pedologica Sinica 26: 72–78.
  • Hagen-Thorn A, Callesen I, Armolaitis K & Nihlgård B (2004) The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management 195: 373–384.
  • Hart SC, Firestone MK & Paul EA (1992) Decomposition and nutrient dynamics of Ponderosa pine needles in a Mediterranean-type climate. Canadian Journal of Forest Research 22: 306–314.
  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C & Karolewski P (2006) Litter decomposition in a common garden experiment with fourteen tree species. Ecology 87: 2288–2297.
  • Hussain S, Siddique T, Saleem M, Arshad M & Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in Agronomy 102: 159–200.
  • Insam H & Goberna M (2004) Use of Biolog® for the community level physiological profiling (CLPP) of environmental samples: Molecular microbial ecology manual. Second edition, pp. 853–860.
  • ISO 11465: 1993. Soil quality – determination of dry matter and water content on a mass basis – gravimetric method.
  • Janušauskaitė D, Baliuckas V & Dabkevičius Z (2013) Needle litter decomposition of native Pinus sylvestris L. and alien Pinus mugo at different ages affecting enzyme activities and soil properties on dune sands. Baltic Forest 19: 50–60.
  • Jensen J, Larsen A, Nielsen LR & Cottrell J (2009) Hybridization between Quercus robur and Q. petraea in a mixed oak stand in Denmark. Annals of Forest Science 66: 706. doi:10.1051/forest/2009058.
  • Jordan D & Kremer RJ (1994) Potential use of soil microbial activity as an indicator of soil quality. Soil biota: management in sustainable farming systems, CSIRO Australia, pp. 245–249.
  • Jurkšienė G & Baliuckas V (2014) Leaf morphological variation of sessile oak (Quercus petraea (Matt.) Liebl.) and pedunculate oak (Quercus robur L.) in Lithuania. Proceedings of the Annual 20th International Scientific Conference: research for rural development 2014. Jelgava 2: 63–69.
  • Jurkšienė G, Janulionis G & Baliuckas V (2012) Paprastojo, bekočio ąžuolų ir jų hibridų paplitimas Trako miške bei šį procesą sąlygojantys veiksniai. Miškininkystė 1: 40–48.
  • Kaiser C, Fuchslueger L, Koranda M, Gorfer M, Stange CF, Kitzler B, Rasche R, Strauss J, Sessitsch A, Zechmeister-Boltenstern S & Richter A (2011) Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology 92: 1036–1051.
  • Kandeler E (1996) Urease activity by colorimetric technique: Methods in soil biology (ed. by F Schinner, R Öhlinger, E Kandeler & R Margesin) Springer, Berlin, pp. 171–174.
  • Karaca A, Cetin SC, Turgay OC & Kizilkaya R (2011) Soil enzymes as indication of soil quality: Soil enzymology (ed. by G Shukla & A Varma) Soil biology 22, Springer, Berlin, Heidelberg, pp. 119–148. doi:10.1007/978-3-642-14225-3_7.
  • Kissling P (1980a) Un réseau de corrélations entre les chênes (Quercus) du Jura. Berichte-Schweizerische Botanische Gesellschaft 90: 1–28.
  • Kissling P (1980b) Clef de détermination des chênes médioeuropéens (Quercus L.). Berichte-Schweizerische Botanische Gesellschaft 90: 29–44.
  • Kissling P (1983) Les chênaies du Jura central suisse. Thesis, Université de Lausanne, Switzerland.
  • Koerselman W & Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–1450.
  • Krämer S & Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in semiarid woodland. Soil Biology and Biochemistry 32: 179–188.
  • LHMT/AM (2011a) Meteorologinis biuletenis. Lietuvos Hidrometeorologijos Tarnyba, Vilnius 6: 900.
  • LHMT/AM (2011b) Meteorologinis biuletenis. Lietuvos Hidrometeorologijos Tarnyba, Vilnius 11: 905.
  • LHMT/AM (2012) Meteorologinis biuletenis. Lietuvos Hidrometeorologijos Tarnyba Vilnius 11: 917.
  • LR AM/LMI/MVT (2006) Miško augaviečių tipai (ed. by M Vaičys) Kaunas, Lututė.
  • Margesin R (1996) Acid and alkaline phosphomonoesterase activity with the substrate p-nitrophe nyl phosphate: Methods in soil biology (ed. by F Schinner, R Öhlinger, E Kandeler & R Margesin) Springer, Berlin, pp. 213–217.
  • Minihan VB & Rushton BS (1984) The taxonomic status of oaks (Quercus ssp.) in Breen Wood, Co Antrim, Northern Ireland. Watsonia 15: 27–32.
  • Moore TR, Trofymow JA, Prescott CE, Fyles J & Titus BD (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9: 46–62.
  • Morris SM Jr (1999) Arginine synthesis, metabolism, and transport: regulators of nitric oxide synthesis: Cellular and molecular biology of nitric oxide (ed. by JD Laskin & DL Laskin) Marcel Dekker, Inc., New York, pp. 57–85.
  • Navasaitis M, Ozolinčius R, Smaliukas D & Balevičienė J (2003) Lietuvos dendroflora. Lututė, Kaunas.
  • Öhlinger R (1996) Soil sampling and sample preparation: Methods in soil biology (ed. by F Schinner, R Öhlinger, E Kandeler & R Margesin) Springer, Berlin, pp. 7–11.
  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.
  • Osman KT (2013) Forest soils: Soils (ed. by KT Osman) Springer, Netherlands, pp. 229–251.
  • Osono T & Takeda H (2004) Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecological Research 19: 593–602.
  • Patalauskaitė D (2007) Communities of Quercus petraea in Lithuania. Acta Biologica Universitatis Daugavpiliensis 7: 159–164.
  • Patalauskaitė D (2008) On the quercetalia robori-petraeae in Lithuania. Botanica Lithuanica 14: 113–119.
  • Piatek KB, Munasinghe P, Peterjohn WT, Adams MB & Cumming JR (2009) Oak contribution to litter nutrient dynamics in an Appalachian forest receiving elevated nitrogen and dolomite. Canadian Journal of Forest Research 39: 936–944.
  • Quilchano C & Maranon T (2002) Dehydrogenase, activity in Mediterranean forest soils. Biology and Fertility of Soils 35: 102–107.
  • Raich JW, Potter CS & Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Global Change Biology 8: 800–812.
  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R & Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiology Ecology 21: 213–219.
  • Rushton BS (1978) Quercus robur L. and Quercus petraea (Matt.) Liebl.: a multivariate approach to the hybrid problem. 1. Data acquisition, analysis and interpretation. Watsonia 12: 81–101.
  • Rushton BS (1979) Quercus robur L. and Quercus petraea (Matt.) Liebl.: a multivariate approach to the hybrid problem. 2. The geographical distribution of population types. Watsonia 12: 209–224.
  • Rushton BS (1983) An analysis of variation of leaf characters in Quercus robur L. and Quercus petraea (Matt.) Liebl. population samples from Northern Ireland. Irish Forestry 40: 52–77.
  • Rustad LE & Cronan CS (1988) Element loss and retention during litter decay in a red spruce stand in Maine. Canadian Journal of Forest Research 18: 947–953.
  • Sardans J & Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry 37: 455–461.
  • Setälä H & McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139: 98–107.
  • Sinsabaugh RL, Carreiro MM & Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60: 1–24.
  • Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T & Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry 40: 2068–2075.
  • Steinhoff S (1998) Kontrollierte kreuzungen zwischen stiel- und traubeneiche: ergebnisse und folgerungen. Allgemeine Forstund. Jagdzeitung 169:163–168.
  • Straigytė L, Janušauskaitė D & Bartkevičius E (2006) Ąžuolų lapų irimo intensyvumas ir įtaka dirvožemiui. Vagos: Mokslo Darbai 73: 13–18.
  • Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J & Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molecular Ecology 8: 831–841.
  • Strickland MS, McCulley RL & Bradford MA (2013) The effect of a quorum-quenching enzyme on leaf litter decomposition. Soil Biology and Biochemistry 64: 65–67.
  • Tabatabai MA & Bremner JM (1972) Assay of urease activity in soils. Soil Biology and Biochemistry 4: 479–487.
  • Treseder KK & Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews 79: 243–262.
  • Trolldenier G (1996) Plate count technique: Methods in soil biology (ed. by F Schinner, R Öhlinger, E Kandeler, R Margesin) Springer, Berlin, pp. 20–26.
  • Tuminauskas S (1957) Bekotis ąžuolas pietų Lietuvoje (Sessile oak in southern Lithuania). Mūsų Girios 5: 11–13.
  • Utobo EB & Tewari L (2015) Soil enzymes as bioindicators of soil ecosystem status. Applied Ecology and Environmental Research 13: 147–169. doi: 10.15666/aeer/1301_147169.
  • Van Soest PJ, Robertson JB & Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597.
  • Wigston DL (1975) The distribution of Q. robur L., Q. petraea (Matt.) Leibl. and their hybrids in south-western England. 1. The assessment of the taxonomic status of populations from leaf characters. Watsonia 10: 345–369.
  • WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  • Yang ZX, Liu SQ, Zheng DW & Feng SD (2006) Effects of cadium, zinc and lead on soil enzyme activities. Journal of Environmental Sciences 18: 1135–1141.
  • Zabinski CA & Gannon JE (1997) Effects of recreational impacts on soil microbial communities. Environmental Management 21: 233–238.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.