PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 77 |

Tytuł artykułu

High density solid biofuel from oil palm biomass

Warianty tytułu

PL
Stałe biopaliwo z biomasy palmy oleistej

Języki publikacji

EN

Abstrakty

EN
High density solid biofuel from oil palm biomass. Large quantities of oil palm biomass available can significantly become the important source for renewable energy in Malaysia in the form of pellet or briquette. Nonetheless, lignocellulosic biomass should be treated to increase their energy efficiency prior to the combustion. Therefore, the aim of this study was to investigate the effects of torrefaction treatment on the weight loss and energy properties of oil palm biomass (oil palm trunk and empty fruit bunch). The lignocellulosic biomass was torrefied at three different temperatures (200 to 300 °C) within 15 to 45 min. Response surface methodology (RSM) was used for optimization of torrefaction conditions, to determine the maximum energy properties and minimum weight loss. Results showed that heating values of biomass was affected by treatment severity (cumulated effect of temperature and time). While the reaction temperature had a strong impact on the energy density of torrefied biomass, the effect of treatment time was considerably lesser under the torrefaction conditions used in this study. It was demonstrated that each biomass type had its own unique set of operating conditions to achieve the same product quality. The optimized torrefaction conditions were verified empirically and applicability of the model was confirmed. The results of this study could be used as a guide for the production of high density solid biofuel from oil palm biomass. Conclusively, high density solid biofuel from oil palm biomass can be produced using torrection method.
PL
Stałe biopaliwo z biomasy palmy oleistej. Duże ilości biomasy palmy oleistej dostępne na terenie Malezji mogą pełnić rolę odnawialnego surowca energetycznego (np. w postaci peletów lub brykietów). Odpowiednie przygotowanie tego paliwa przed spalaniem pozwala zwiększyć jego wydajność energetyczną. Przeprowadzone badania miały na celu określenie wpływu toryfikacji na utratę masy i właściwości energetyczne biomasy pochodzącej z pnia palmy oleistej oraz z gniazda nasiennego. Przyjęto następujące warunki toryfikacji: temperature od 200 do 300 °C, czas 15 - 45 minut. Optymalizację warunków toryfikacji przeprowadzono metodą RSM. Uzyskane rezultaty pokazują silny wpływ temperatury procesu na kaloryczność paliwa. Wykazano, że każdy typ surowca – dla maksymalnej wydajności energetycznej – wymaga oddzielnej optymalizacji warunków toryfikacji. Empirycznie potwierdzono poprawność przyjętych modeli matematycznych i dowiedziono użyteczności biomasy z palmy oleistej jako surowca energetycznego.

Wydawca

-

Rocznik

Tom

77

Opis fizyczny

p.107-117,fig.,ref.

Twórcy

autor
  • Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland

Bibliografia

  • 1. THE STAR, 2012. (http://www.thestar.com.my)
  • 2. TABIL L, ADAPA P, KASHANINEJAD M. 2011: Biomass Feedstock Pre-Processing-Part 1: Pre-Treatment. In: Aurélio Marco dos Santos Bernardes, editors. Biofuel's Engineering Process Technology, Croatia: InTech, p. 411-38.
  • 3. CHIN KL, H’NG PS, WONG LJ, TEY BT, PARIDAH MT. 2010: Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae. Bioresource Technol., 101(9), 3287-91.
  • 4. CHIN KL, H’NG PS,WONG LJ, TEY BT, PARIDAH MT. 2011: Production of glucose from oil palm trunk and sawdust of rubberwood and mixed hardwood. Appl Energ., 88, 4222-8.
  • 5. LLOYD TA,WYMAN CE. 2005: Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technol., 96, 1967–77.
  • 6. YAN W, ACHARJEE TC, CORONELLA CJ, VÁSQUEZ VR. 2009: Thermal pretreatment of lignocellulosic biomass. Environ. Prog. Sustain. Energ., 28(3), 435-40.
  • 7. ARIAS B, PEVIDA C, FERMOSO J, PLAZA MG, RUBIERA F, PIS JJ. 2008: Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol., 89, 169-75.
  • 8. ESTEVES BM, PEREIRA HM. 2009: Heat treatment of wood. Bioresources, 4(1), 370-404.
  • 9. WISE LE,MURPHY M, DADDIECO AA. 1946: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Technical Association Paper, 29, 210-8.
  • 10. WEILAND JJ, GUYONNET R.2003: Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst., 61, 216-20.
  • 11. H’NG PS,WONG LJ, CHIN KL, TOR ES, TAN SE, TEY BT,MAMINSKI M. 2011: Oil palm (Elaeis guineensis) trunk as resource of starch and other sugars. J. Appl. Sci., 11(16), 3053-7.
  • 12. MANO JF, KONIAROVA D, REIS RL. 2003: Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J. Mater. Sci. Mater. El., 14, 127-35.
  • 13. PRINS MJ, PTASINSKI KJ, JANSSEN FJJG. 2006: Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrol., 77(1), 28-34.
  • 14. ROUSSET P, AGUIAR C, LABBE N, COMMANDRE JM. 2011: Enhancing the combustible properties of bamboo for torrefaction. Bioresour. Technol., 102, 8225-31.
  • 15. CHEN WH, KUO PC. 2011: Torrefaction and co-torrefaction characterization of hemicelluloses, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36, 803-11.
  • 16. SANNIGRAHI P, KIM DH, JUNG SK, RAGAUSKAS A. 2011: Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci., 4, 1306-10
  • 17. KAMDEN DP, PIZZI A, JERMANNAUD A. 2002: Durability of heat-treated wood. Holz Roh Werkst., 60, 1-6.
  • 18. AGRAWAL KR. 1988: Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model. Canadian J. Chem. Eng., 66, 403-12.
  • 19. PHANPHANICH M AND MANI S. 2011: Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol., 102(2), 1246-53.
  • 20. ALMEIDA G, BRITO JO, PERRE P. 2010: Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour. Technol., 101(24), 9778-84.
  • 21. PIERRE F, ALMEIDA G, BRITO JO, PERRE P. 2011: Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. Bioresources. 6(2), 1204-18.
  • 22. LEHTIKANGAS P. 2001: Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenerg., 20(5), 351-60.
  • 23. SHAFIZADEH F, SARKANEN KV, TILLMAN DA. 1976: Thermal uses and properties of carbohydrates and lignins. New York: Academic Press, American Chemical Society.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4c866943-2ee1-45e8-8919-68d7bce014b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.