PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S3 |

Tytuł artykułu

Research on intelligent diagnosis method for large-scale ship engine fault in non-deterministic environment

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Aiming at the problem of inaccurate and time-consuming of the fault diagnosis method for large-scale ship engine, an intelligent diagnosis method for large-scale ship engine fault in non-deterministic environment based on neural network is proposed. First, the possible fault of the engine was analyzed, and the downtime fault of large-scale ship engine and the main fault mode were identified. On this basis, the fault diagnosis model for large-scale ship engine based on neural network is established, and the intelligent diagnosis of engine fault is completed. The experiment proved that the proposed method has high diagnostic accuracy, engine fault diagnosis takes only about 3s, with a higher use value

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Opis fizyczny

p.200-206,fig.,ref.

Twórcy

autor
  • School of Computer Science and Technology, Wuhan University of Technology, Wuhan, 430070, China
autor
  • College of Computer and Information Engineering, Nanyang Institute of Technology, Nanyang, 473004, China

Bibliografia

  • 1. LI Suhua.Automobile Engine Fault Pattern Recognition Simulation under Variable Speed Conditions.Computer Simulation,2016,33(11):144-147.
  • 2. Lei Y,Jia F,Lin J,et al.An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data.IEEE Transactions on Industrial Electronics,2016,63(5):3137-3147.
  • 3. Cheng Y,Wang R,Xu M.A Combined Model-Based and Intelligent Method for Small Fault Detection and Isolation of Actuators.IEEE Transactions on Industrial Electronics,2016,63(4):2403-2413.
  • 4. Chen M C,Hsu C C,Malhotra B,et al.An efficient ICADW-SVDD fault detection and diagnosis method for nonGaussian processes.International Journal of Production Research,2016,54(17):1-11.
  • 5. Wu F,Zhao J.A Real-Time Multiple Open-Circuit Fault Diagnosis Method in Voltage-Source-Inverter Fed Vector Controlled Drives.IEEE Transactions on Power Electronics,2015,31(2):1425-1437.
  • 6. Moreira M V,Basilio J C,Cabral F G. Polynomial Time Verification of Decentralized Diagnosability of Discrete Event Systems”Versus”Decentralized Fault Diagnosis of Discrete Event Systems:A Critical Appraisal.IEEE Transactions on Automatic Control,2015,61(1):178-181.
  • 7. Chao K H,Chen P Y.An Intelligent Fault Diagnosis Method Based on Extension Theory for DC–AC Converters. International Journal of Fuzzy Systems,2015,17(1):1-11.
  • 8. ZENGWentao,ZHANG Hua,YAN Wei.Application of Approximate Entropy and Support Vector Machine in Fault Diagnosis of Engine.Machinery Design&Manufac ture,2016,(11):46-49.
  • 9. CUI Jianguo,LIU Baosheng,WANG Guihua,et al.Fault Diagnosis of Certain Key Components Based on Wavelet Packet and SVM Warship Engine.Fire Control&Command Control,2016,41(6):181-184.
  • 10. Gao, W. and W. Wang, The fifth geometric-arithmetic index of bridge graph and carbon nanocones. Journal of Difference Equations and Applications, 2017. 23(1-2SI): p. 100-109.
  • 11. Gao, W., et al., Distance learning techniques for ontology similarity measuring and ontology mapping. Cluster Computing-The Journal of Networks Software Tools and Applications, 2017. 20(2SI): p. 959-968.
  • 12. MI Weijian,SHEN Qing,LIU Yuan,et al.Engine fault diagnosis based on infrared thermal imaging technology. Journal of Shanghai Maritime University,2016,37(4):65-69.
  • 13. M.A. Hassan, M.A.M. Ismail. Literature Review for The Development of Dikes’s Breach Channel Mechanism Caused by Erosion Processes During Oovertopping Failure. Engineering Heritage Journal, 2017, 1(2):23-30.
  • 14. HUABIN Xiao, MENGYING Wang, SHUO Sheng. Spatial evolution of URNCL andresponse of ecological security: a case study on Foshan City. Geology, Ecology, and Landscapes, 2017, 1(3): 190-196.
  • 15. R.Radmanfar, M. Rezayi, S. Salajegheh, V. A.Bafrani. Determination the most important of hse climate assessment indicators case study: hse climate assessment of combined cycle power plant staffs. Journal CleanWAS, 2017, 1(2): 23-26.
  • 16. M.A.A. Maksou, K.M.A. Maksoud. Appraisement of The Geologic Features as A Geo-Heritage in Abu-Roash Area, Cairo- Egypt. Malaysian Journal Geosciences, 2017, 1(2): 24-28.
  • 17. T. Bata, N.K. Samaila, A.S. Maigari, M. B. Abubakar Simon Y. Ikyoive. Common Occurences Of Authentic Pyrite crystals in Cretaceous Oil Sands as Consequence of Biodegradation Processes. Geological Behavior, 2017, 1(2):26–30.
  • 18. S.B. Shamsudin, A.A. Majid. Association of blood lead levels and working memory ability of primary school children surrounding ex-copper mining area in Ranau, Sabah (Malaysia). Acta Scientifica Malaysia, 2017, 1(1): 01-03.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4c47a659-f385-4f99-91b6-f0814d690faa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.