PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Peculiarities of the vertical thermal regime of lake Tapeliai

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nonlinear model of temperature dependence on lake depth is proposed for interpreting the vertical thermal structure of a lake. The model has two critical temperatures: T1* – the maximum density water temperature Tcr = 4ºC and T2* – the lake water surface asymptotic temperature in warm seasons. Although the model depends on four parameters, its solution and properties are effectively determined by only two dimensionless parameters: the constant temperature gradient γ and the nonlinearity parameter v. The proposed thermodepth model is applicable to the interpretation of the vertical thermal regime of Lake Tapeliai by comparing the results of theoretical calculations and experimental measurements. Within the limits of our model, the position of the thermocline can be determined theoretically, i.e., the model parameters allow for expressing the thermocline position. A great match has been obtained between experimental data and theoretical dependencies.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
28
Numer
4
Opis fizyczny
p.2765-2772,fig.,ref.
Twórcy
autor
  • Laboratory of Photovoltaic Technology VGTU, Vilnius, Lithuania
  • Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Laboratory of Photovoltaic Technology VGTU, Vilnius, Lithuania
  • Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania
autor
  • Laboratory of Photovoltaic Technology VGTU, Vilnius, Lithuania
  • Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania
Bibliografia
  • 1. WELCH P.S. Limnnology. London: Andesite Press, 558, 2017.
  • 2. KILKUS K. Thermal structures of dimictic lakes. Vilnius: Vilnius University Press, 200, 2000 [In Lithuanian].
  • 3. BRÖNMARK C., HANSSON L.-A. The Biology of Lakes and Ponds (Biology of Habitats Series) 3rd Ed. Oxford University Press; London, 368, 2017.
  • 4. HUTTER K., WANG Y., CHUBARENKO I. Physics of lakes. Vol. 1. Foundation of the mathematical and physical background. Springer, 483, 2011.
  • 5. HUTTER K., WANG Y., CHUBARENKO I. Physics of lakes. Vol. 2: Lakes as Oscillators, Springer-Verlag Berlin Heidelberg, 715, 2011.
  • 6. OMSTEDT A. Guide to Process Based Modeling of Lakes and Coastal Seas, 2nd ed. Springer, Berlin, 273, 2016.
  • 7. DAUBARIENĖ J., VALIUŠKEVIČIUS G. Lake Classifications used in Lithuania: System and Employment Possibilities. Geografija, 45 (2), 111, 2011 [In Lithuanian].
  • 8. DAVIS M.D. On the Classification of Lake Basins, Palala Press, 125, 2016.
  • 9. LANE A., NORTON M., RYAN S. Water Resources: A New Water Architecture, London: Wiley-Blackwell, 360, 2017.
  • 10. BROUWER F.M., Integrated Environmental Modelling: Design and Tools (Studies in Operational Regional Science) Springer, Berlin, 273, 2011.
  • 11. MOISEJENKOVA A., TARASIUK N., KOVIAZINA E., MACEIKA E., GIRGŽDYS A. 137Cs in lake Tapeliai (Lithuania). Lithuanian Journal of Physics, 52 (3), 238, 2012.
  • 12. TARASIUK N., MOISEJENKOVA A., KOVIAZINA E. On the mechanism of the enrichment in radiocesium of near-bottom water in Lake Juodis, Lithuania, Journal of Environmental Radioactivity, 101, 883, 2010.
  • 13. VERHULST P.F. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique, 10, 113, 2014.
  • 14. BERGER-VACHON C., LAFUENTE A.M.G. Complex Systems: Solutions and Challenges in Economics, Management and Engineering. Springer; 43, 2017.
  • 15. POLYANIN A.D., ZAITSEV V.F. Handbook of Nonlinear Partial Differential Equations 2nd Ed. Chapman and Hall/CRC; 1912, 2011.
  • 16. CONSTANDA C., RIVA M. Integral Methods in Science and Engineering, Volume 1: Theoretical Techniques. Birkhäuser; 340, 2017.
  • 17. ZHEN-GANG JI. Hydrodynamics and Water Quality, John Wiley & Sons: New Jersey, 692, 2017.
  • 18. ARNOLD V.I. Mathematical Understanding of Nature: Essays on Amazing Physical Phenomena and Their Understanding by Mathematicians. New York: American Mathematical Society, pp.167, 2014.
  • 19. Michel A.N., Hou L. Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions (Systems & Control: Foundations & Applications), Birkhäuser: New York, 653, 2016.
  • 20. MIŠKINIS P., VASILIAUSKIENĖ V. The analytical solutions of the harvesting Verhulst’s evolution equation. Ecology Modelling, 360, 189, 2017.
  • 21. ROSS J.V. A note on density dependence in population model. Ecological Modelling, 220, 3472, 2009.
  • 22. DOMINGUEZ H., MUNOZ M.J.G. Water Extraction of Bioactive Compounds: From Plants to Drug Development. Elsevier; 530, 2017.
  • 23. GULATI R.D., ZADEREEV E.S. Ecology of Meromictic Lakes (Ecological Studies) Springer; 405, 2017.
  • 24. TARASIUK N., MOISEJENKOVA A., PEČIULIENĖ M., JASAITIS D., GIRGŽDYS A. Peculiarities of Thermal Regime Formation of Near-Bottom Lake Water, Pol. J. Environ. Stud., 24 (6), 2655, 2015.
  • 25. TUNDISI J.G., TUNDISI T.M. Limnology. CRC Press. Taylor and Francis Group, pp. 865, 2011.
  • 26. SEN Z. Applied Hydrogeology for Scientists and Engineers. CRC Press; 435, 2017.
  • 27. LANE A., NORTON M. Water Resources: A New Water Architecture. Wiley-Blackwell; 334, 2017.
  • 28. PTAK M., CHOIŃSKI A., PIEKARCZYK J., PRYŁOWSKI T. Applying Landsat Satellite Thermal Images in the Analysis of Polish Lake Temperatures. Pol. J. Environ. Stud., 26 (5), 2159, 2017.
  • 29. DUNALSKA J. Impact of limited water flow in a pipeline on the thermal and oxygen conditions in a lake restored by hypolimnetic withdrawal method. Pol. J. Environ. Stud., 12 (4), 409, 2003.
  • 30. Stepanenko V.M., Martynov A., Johnk K.D., M. Subin Z., Perroud M., Fang X., Beyrich F., Mironov D., Goyette S. A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geoscientific Model Development, 6, 4, 2013.
  • 31. Sugiyama S., Minowa M., Sakakibara D., Skvarca P., Sawagaki T., Ohashi Y., Naito N., Chikita K. Thermal structure of proglacial lakes in Patagonia. Journal of Geophysical Research: Earth Surface, 121, 12, 2016.
  • 32. Chung M., Detweiler C., Hamilton M., Higgins J., Ore J.P., Thompson S. Obtaining the Thermal Structure of Lakes from the Air. Water, 7, 11, 2015.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4c31b717-8cdd-443b-a7b0-f34fa0201e3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.