PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 23 | 3 |
Tytuł artykułu

Fractional composition of humic compounds and the capacity to bind cadmium ions from the solution by biologically and thermally processed Miscanthus giganteus biomass

Treść / Zawartość
Warianty tytułu
PL
Skład frakcyjny związków humusowych oraz zdolności wiązania jonów kadmu z roztworu przez biomasę Miscanthus giganteus przekształconą biologicznie i termicznie
Języki publikacji
EN
Abstrakty
EN
The capacity of functional groups of soil organic matter to form organometallic complexes may efficiently reduce the risk of migration of toxic ions of heavy metals in the environment. Therefore, a research was conducted to determine the effect of composting and pyrolysis of Miscanthus giganteus biomass on the quality of humic compounds and on the ability of these materials to bind cadmium ions from the solution. Both processes did not cause any significantly favorable changes in fractional composition of the humic compounds of the transformed Miscanthus giganteus biomass. In the case of the unprocessed and composted biomass, changes in cadmium sorption by the materials used in the research, depending on Cd dose and how long the sample was in contact with the solution, had a similar course, which indicates that the responses taking place directly after the application of the solution that contained Cd ions were stable. In the case of thermal processing of Miscanthus giganteus biomass, it was found that Cd content in the solution decreased with time. Lower cadmium concentrations in the extracts after separation of the biomass were determined in the series with biologically transformed Miscanthus giganteus.
PL
Zdolność grup funkcyjnych materii organicznej do tworzenia kompleksów metaloorganicznych może wydajnie zmniejszyć ryzyko migracji jonów toksycznych metali ciężkich w środowisku. W związku z tym przeprowadzono badania, których celem było określenie wpływu kompostowania i pirolizy biomasy Miscanthus giganteus na jakość związków humusowych oraz możliwości wiązania jonów kadmu z roztworu przez te materiały. Oba procesy nie spowodowały znacząco korzystnych zmian w składzie frakcyjnym związków humusowych przekształconej biomasy Miscanthus giganteus. Przebieg zmian sorpcji kadmu przez materiały wykorzystane w badaniach, w zależności od dawki Cd i czasu kontaktu próbki z roztworem w przypadku biomasy nieprzetworzonej i przekompostowanej zachodził podobnie świadcząc o stabilnych reakcjach mających miejsce bezpośrednio po aplikacji roztworu zawierającego jony Cd. W przypadku termicznego przekształcenia biomasy Miscanthus giganteus stwierdzono zmniejszanie się zawartości Cd w roztworze wraz z upływem czasu. Mniejsze stężenia kadmu w ekstraktach po oddzieleniu biomasy oznaczono w serii z Miscanthus giganteus przekształconym biologicznie.
Wydawca
-
Czasopismo
Rocznik
Tom
23
Numer
3
Opis fizyczny
p.347-361,fig.,ref.
Twórcy
autor
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al.Mickiewicza 21, 31-120 Krakow, Poland
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al.Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al.Mickiewicza 21, 31-120 Krakow, Poland
Bibliografia
  • Boguta P., Sokołowska Z., 2013. Influence of copper (ii) ions on stability of dissolved humic acids – coagulation studies. Acta Agroph., 20, 2, 253-267.
  • Czekała W., Malińska K., Cáceres R., Janczak D., Dach J., Lewicki A., 2016. Co-composting of poultry manure mixtures amended with biochar–The effect of biochar on temperature and C-CO2 emission. Bioresource Technol., 200, 921-927. DOI: 10.1016/j.biortech.2015.11.019.
  • Enders A., Hanley K., Whitman T., Joseph S., Lehmann J., 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technol., 114, 644-653. DOI: 10.1016/j.biortech.2012.03.022.
  • Fu F., Wang Q., 2011. Removal of heavy metal ions from wastewaters: A review. J. Environ. Managem., 92, 3, 407-418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Gondek K., 2006. Accumulation of heavy metals in oats fertilized with composts. Acta Agroph., 10, 1, 89-102.
  • Gondek K., Baran A., Kopeć M., 2014a. The effect of low-temperature transformation of mixtures of sewage sludge and plant material on content, leachability and toxicity of heavy metals. Chemosphere, 117, 33-39. DOI: 10.1016/j.chemosphere.2014.05.032.
  • Gondek K., Kopeć M., Mierzwa M., Tabak M., Chmiel M., 2014b. Chemical and biological properties of composts produced from organic waste. J. Elem., 19, 2, 377-390. DOI: 10.5601/jelem.2014.19.2.670.
  • Griffith S.M., Schnitzer M., 1975. Analytical characteristics of humic acid and fulvic acids extracted from tropical volcanic soils. Soil Sci. Soc. Am. Proc., 39, 861-867. DOI: 10.2136/sssaj1975.03615995003900050023x.
  • Guo X., Zhang S., Shan X.Q., 2008. Adsorption of metal ions on lignin. J. Hazard Matter., 151, 134-142. DOI: 10.1016/j.jhazmat.2007.05.065.
  • Hossain M.K., Strezov V., Chan K.Y., Ziółkowski A., Nelson P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Managem., 92, 1, 223-228. DOI: 10.1016/j.jenvman.2010.09.008.
  • IBI 2012. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil. (cited 14 September, 2015).
  • Järup L., 2003. Hazards of heavy metal contamination. British Medical Bulletin, 68,1, 167-182. DOI: 10.1093/bmb/ldg032.
  • Jindo K., Suto K., Matsumoto K., Garcia C., Sonoki T., Sanchez-Monedero M.A., 2012. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Biores. Technol., 110, 396-404. DOI: 10.1016/j.biortech.2012.01.120.
  • Jindo K., Mizumoto H., Sawada Y., Sanchez-Monedero M.A., Sonoki T., 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613-6621. DOI:10.5194/bg-11-6613-2014.
  • Kim W-K., Shim T., Kim Y-S., Hyun S., Ryu Ch., Park J-K., Jung J., 2013. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour. Technol., 136, 266-270. DOI: 10.1016/j.biortech. 2013.03.186.
  • Kopeć M., Gondek K., Baran A., 2013. Assessment of respiration activity and ecotoxicity of composts containing biopolymers. Ecotox. Environ. Safe., 89, 137-142. DOI: 10.1016/j.ecoenv. 2012.11.021.
  • Kopeć M., Chmiel M., Gondek K., Mierzwa-Hersztek M., Antonkiewicz J., 2015. Factors influencing composting poultry waste. J. Ecol. Eng., 16(5), 93-100. DOI: 10.12911/22998993/60460.
  • Krishnani K.K, Meng X., Christodoulatos C., Bodu V.M., 2008. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater., 153, 3, 1222-1234. DOI: 10.1016/j.jhazmat.2007.09.113.
  • Kumar U., Bandyopadhyay M., 2006. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technol., 97, 104-109. DOI: 10.1016/j.biortech.2005.02.027.
  • Liu T., Liu B., Zhang W., 2014. Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment. Pol. J. Environ. Stud., 23, 1, 271-275.
  • Lu H., Zhang W., Wang S., Zhuang L., Yang Y., Qiu R., 2013. Characterization of sewage sludgederived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis., 102, 137-143. DOI: 10.1016/j.jaap.2013.03.004.
  • Martinho J., Campos B., Bras I., Silva E., 2015. The role of compost properties in sorption of heavy metals. Environ. Protect. Engineer. 41, 2, 57-66. DOI: 10.5277/epe150205.
  • Meena A.K., Kadirvelu K., Mishraa G.K., Rajagopal C., Nagar P.N., 2008. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater., 150, 619-625. DOI: 10.1016/j.jhazmat.2007.05.011.
  • Meier S., Curaqueo G., Khan N., Bolan N., Rilling J., Vidal C., Fernández N., Acuna J., González M.E., Cornejo P., Borie F., 2015. Effect of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. J. Soils Sediments, 1-14. DOI:10.1007/s11368- 015-1224-1.
  • Mendez A., Terradillos M., Gasco G., 2013. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis., 102, 124-130. DOI:10.1016/j.biortech.2015.05.084.
  • Monachese M, Burton J.P., Reid G., 2012. Bioremediation and tolerance of humus to heavy metals through microbial processes: a potential role for probiotics. App. Environ. Microbiol., 78, 18, 6397-6404. DOI: 10.1128/AEM.01665-12.
  • Oleszczuk P., 2007. The evaluation of sewage sludge and compost toxicity to Heterocypris incongruens in relation to inorganic and organic contaminants content. Environ. Toxicol., 22, 6, 587-596. DOI: 10.1002/tox.20282.
  • Pehlivan E., Özkan A.M., Dinc S., Parlavici A., 2009. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J. Hazard. Matter., 167, 1044-1049. DOI: 10.1016/j.jhazmat.2009.01.096.
  • Pino G.A.H., de Mesquita L.M., Torem M.L., 2006. Heavy metals biosorption by coconut shell powder. XIII International Mineral Processing Congress, 448-452.
  • Réveillé V., Mansuy L., Jardé É., 2003. Characterization of sewage sludge-derived organic matter: lipids and humic acids. Org. Geochem., 34, 4, 615-627. DOI: 10.1016/S0146-6380(02)00216-4.
  • Sánchez-Monedero M.A., Cegarra J., Garcia D., Roig A., 2002. Chemical and structural evolution of humic acids during organic waste composting. Biodegradation, 13, 6, 361-371. DOI: 10.1023/A:1022888231982.
  • Seelsaen N., McLaughlan R., Stuets R.M., Moore S.L., 2006. Influence of compost characteristic on heavy metal sorption from synthetic stormwater. Book of Proceedings 7th Intern. Conf. on Urban Drainage Modelling and 4th Intern Conf on Water Sensitive on Urban Design, 604-611.
  • Serrano S., O’Day P.A., Vlassopoulos D., Garcia-Gonzalez M.T., Garrido F.A., 2009. Surface complexion and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochim. Cosmochim. Acta, 73, 543-558. DOI: 10.1016/j.gca.2008.11.018.
  • Shin E.W., Rowell R.M., 2005. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement. Chemosphere, 60, 1054-1061. DOI: 10.1016/j.chemosphere.2005.01.017.
  • Singh B.R., Gupta S.K., Azaizeh H., Shilev S., Sudre D., Song W.Y., Martinola E., Mench M., 2011. Safety of food crops on land contaminated with trace elements. J. Sci. Food Agric., 91(8), 1349-1366. DOI: 10.1002/jsfa.4355.
  • Systematics of Polish Soil, 2011. Soil Science Annual, 62, 3, 5-142.
  • Tuomela M., Vikman M., Hatakka A., Itavaara M., 2000. Biodegradation of lignin in a compost environment: a review. Bioresour. Technol., 72, 2, 169-183. DOI: 10.1016/S0960-8524(99) 00104-2.
  • Weng L., Temminghoff E.J.M., Lofts S., Topping E., van Riemsdijk W.H., 2002. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol., 36, 22, 4804-4810. doi: 10.1021/es0200084.
  • Zeng Z.Z., Wang X.L., Gou J.F., Zhang H.F., Wang H.C., Nan Z.R., 2014. Effects on Ni and Cd speciation in sewage sludge during composting and co-composting with steel slag. Waste Management & Research, 32(3), 179-185. DOI: 10.1177/0734242X14521682.
  • Zhao G., Wu X., Tan X., Wang X., 2011. Sorption of heavy metal ions from aqueous solution: a review. The Open Colloid Science Journal, 4, 19-31.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4c231611-f5a8-40a1-9bae-647343c63a1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.