Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 2 |
Tytuł artykułu

Biodiversity of dominant cultivable endophytic bacteria inhabiting tissues of six different cultivars of maize (Zea mays L. ssp. mays) cropped under field conditions

Warianty tytułu
Języki publikacji
Endophytic bacteria (EnB) play a crucial role in plant development. This study was an attempt to isolate and identify dominant cultivable EnB inhabiting young seedlings germinated in vitro and leaves of six maize cultivars grown under field conditions at temperate climate zone with culture-dependent approach. We isolated bacteria from field cropped maize only. Strains were identified based on 16S rRNA gene sequencing. In particular, members of Actinobacteria, Bacteroidetes, Firmicutes and α- and γ-Proteobacteria were found. Species of two genus Pseudomonas and Bacillus were dominant among them. Higher diversity of EnB was found in plants collected from Kobierzyce, where we identified 35 species from 16 genera with 22 species uniquely found at this field. On the contrary, from maize leaves collected at Smolice we identified 24 species representing 10 genera with 10 species uniquely isolated from this field. However, none of species was common for all cultivars at both locations. Among isolated EnB six species only, Pseudomonas clemancea, Pseudomonas fluorescens, Bacillus megaterium, Bacillus simplex, Arthrobacter nicotinovorans and Arthrobacter nitroguajacolicus, were found in aboveground parts of the same cultivar grown on both tested fields. The fact that the same cultivars, sown from the same lots of seeds, under field conditions on two different locations were colonized with noticeably different associations of cultivable EnB suggest that cultivar genotype is an important factor selecting endophytic bacteria from local agro-environment. To our knowledge this is first report about the significant variation of diversity of cultivable endophytic bacteria inhabiting aboveground parts of the same maize cultivars grown at different locations.
Słowa kluczowe
Opis fizyczny
  • Department of Plant Protection, Agriculture Microbiology Laboratory, Wroclaw University of Environmental and Life Science, Wroclaw, Poland
  • Department of Plant Protection, Agriculture Microbiology Laboratory, Wroclaw University of Environmental and Life Science, Wroclaw, Poland
  • Bodenhausen N., W.M. Horton and J. Bergelson. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLOS ONE 8: e56329.
  • Chelius M.K. and E.W. Triplett. 2001. The diversity of archea and bacteria in associacion with roots of Zea mays L. Microb. Ecol. 41: 252–263.
  • Cho K.M., S.Y. Hong, S.M. Lee, Y.H. Kim, G.G. Kahng, Y.P. Lim, H. Kim and H.D. Yun. 2007. Endophytic bacterial communities in Ginseng and their antifungal activity against pathogens. FEMS Microbiol. Ecol. 54: 341–351.
  • Hallmann J., A. Quadt-Hallman, W.F. Mahaffee and J.W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895–914.
  • Hardoim P.R., L.S. van Ovebeek and J.D. van Elsas. 2008. Properties of bacterial endophytes and their role in plant growth. Trends Mircobiol. 16: 463–471.
  • Hoagland D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347: 1–32.
  • Jacobs M.J., W.M. Bugbee and D.A. Gabrielson. 1985. Enumeration, location and characterization of endophytic bacteria within sugar beet roots. Can. J. Botany. 63: 1262–1265.
  • Johnston-Monje D. and M.N. Raizada. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLOS ONE 6: e20396.
  • Krawczyk K., J. Kamasa, A. Zwolinska. and H. Pospieszny. 2010. First report of Pantoea ananatis associated with leaf spot disease of maize in Poland. J. Plant Pathol. 92: 807–811.
  • Kuklinsky-Sorbal J., W.L. Araujo, R. Mendes, I.O. Geraldi, A.A. Pizzirani-Kleiner and J.L. Azevedo. 2004. Isolation and characterization of soybean – assocaited bacterial and their potential for plant growth promotion. Environ. Microbiol. 6: 1244–1251.
  • Liu Y., S. Zuo, L. Xu, Y. Zou and W. Song. 2012. Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch. Microbiol. 194 (12): 1001–1012.
  • Liu Y., S. Zuo, Y. Zuo, J. Wang and W. Song. 2013. Investigation on diversity and population succession dynamics of endophytic bacteria from seed of maize (Zea mays L., Nongda108) at different growth stages. Ann. Microbiol. 63: 71–79.
  • Matsuoka Y., Y. Vigouroux, M.M. Goodman, G.J. Sanchez, E. Buckler and J. Doebley. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. 99: 6080–6084.
  • McInroy J.A. and J.W. Kloepper. 1995. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant. Soil. 173: 337–342.
  • Nissinen R., M.K. Mannisto and J.D. van Elsas. 2012. Endophytic bacteria communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol. Ecol. 82: 510–522.
  • Pal A. and A.K. Paul. 2013. Bacterial endophytes of the medicinal herb Hygrophila spinosa T. Anders and their antimicrobial activity. BJPR 3: 795–806.
  • Pérez-y-Terrón R., M.C. Villegas, A. Cuellar, J. Muñoz-Rojas, M. Castañeda-Lucio, I. Hernández-Lucas, R. Bustillos-Cristales, L. Bautista-Sosa, J.A. Munive, R. Caicedo-Rivas and others. 2009. Detection of Pantoea ananatis, causal agent of leaf spot disease of maize in Mexico. Australasian Plant Disease Notes 4: 96–99.
  • Rai R., P.K. Dash and B.M. Prasanna. 2007. Endophytic bacteral flora in the stem tissue of tropical maize (Zea mays L.) genotype: isolation, identyfication and enumeration. World J. Microbiol. Biotechnol. 23: 853–858.
  • Rijavec T., A. Lapanje, M. Dermastia and M. Rupnik. 2007 Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol. 53: 802–808.
  • Rodríguez Cáceres E.A. 1982. Improved medium for isolation of Azospirillum spp. Appl. Environ. Microbiol. 44: 990–991.
  • Segher D., L. Wittebolle, E.M. Top, W. Verstraete and S.D. Siciliano. 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70: 1475–1482.
  • Seo W.T., W.J. Lim, E.J. Kim, H.D. Yun, J. Han Lee and K.M. Cho. 2010. Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. J. Korean Soc. Appl. Biol. Chem. 53: 493–503.
  • Stanier R.Y., N.J. Palleroni and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–171.
  • Surette M.A., A.V. Sturz, R.R. Lada and J. Nowak. 2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253: 381–390.
  • Xu M., J. Sheng, L. Chen, Y. Men, L. Gan, S. Guo and L. Shen. 2013. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J. Microbiol. Biotechnol. 30 (3): 835–845.
  • Zinniel D.K., P. Lambrecht, N.B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C.A. Ishimaru, A. Arunakumari, R.G. Barletta and A.K. Vidaver. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68: 2198–2208.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.