PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 1 |
Tytuł artykułu

Downregulation of chloroplast protease AtDeg5 leads to changes in chronological progression of ontogenetic stages, leaf morphology and chloroplast ultrastructure in Arabidopsis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The chloroplast protein AtDeg5 is a serine-type protease peripherally attached to thylakoid membrane at its lumenal side. Since reliable data regarding the role of AtDeg5 in controlling the course of growth and developmental processes are extremely limited, two independent T-DNA insertional lines with different extent of AtDeg5 reduction were prepared and ontogenesis stage-based analysis performed. Both mutant lines displayed a compensatory overaccumulation of AtDeg8. The repression of AtDeg5 protease altered a range of phenotypic features in at least one of the mutants, with the most prominent being changes in chronological progression of development and growth of individual rosette leaves, flower production and silique ripening as well as in the area of fully expanded leaves and chloroplast ultrastructure. By analyzing the results of parallel-mutant screening we conclude that AtDeg8 overdose may rescue 23% of AtDeg5 deficiency with regard to some AtDeg5-controlled traits; alternatively AtDeg5 may have catalytic sites in excess so that these traits might remain unaltered when AtDeg5 pool is reduced by 23%. For some other AtDeg5-dependent traits the absence of excessive amount of AtDeg5 catalytic sites, lack of AtDeg5 dosage effect and inability of AtDeg8 to compensate deficiency or absence of AtDeg5 occurred.
Wydawca
-
Rocznik
Tom
84
Numer
1
Opis fizyczny
p.59-70,fig.,ref.
Twórcy
autor
  • Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
Bibliografia
  • 1. Pesquet E. Plant proteases – from detection to function. Physiol Plant. 2012;145(1):1–4. http://dx.doi.org/10.1111/j.1399-3054.2012.01614.x
  • 2. Lipińska B, Ang D, Georgopoulos C. Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding aheat shock protein. Nucl Acids Res. 1988;16(15):7545–7562. http://dx.doi.org/10.1093/nar/16.15.7545
  • 3. Strauch KL, Beckwitt J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA. 1988;85(5):1576–1580. http://dx.doi.org/10.1073/pnas.85.5.1576
  • 4. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizesmisfolded protein and activates a protease. Cell. 2004;117(4):483–494.http://dx.doi.org/10.1016/S0092-8674(04)00454-4
  • 5. Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, Sui SF. Activation of DegP chaperone-protease via formation of large cagelike oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA. 2008;105(33):11939–11944. http://dx.doi.org/10.1073/pnas.0805464105
  • 6. Bai XC, Pan XI, Wang XJ, Ye YY, Chang LF, Leng D, et al. Characterization of the structure and function of Escherichia coli DegQ asa representative of the DegQ-like proteases of bacterial HtrA familyproteins. Structure. 2011;19(9):1328–1337. http://dx.doi.org/10.1016/j.str.2011.06.013
  • 7. Ortega J, Iwańczyk J, Jomaa A. Escherichia coli DegP: a structure-driven functional model. J Bacteriol. 2009;191(15):4705–4713. http://dx.doi.org/10.1128/JB.00472-09
  • 8. Schuhmann H, Huesgen PF, Adamska I. The family of Deg/HtrA proteases in plants. BMC Plant Biol. 2012;12(1):1–14. http://dx.doi.org/10.1186/1471-2229-12-52
  • 9. Schuhmann H, Adamska I. Deg proteases and their role in protein quality control and processing in different subcellular compartmentsof the plant cell. Physiol Plant. 2012;145(1):224–234. http://dx.doi.org/10.1111/j.1399-3054.2011.01533.x
  • 10. Schuhmann H, Mogg U, Adamska I. A new principle of oligomerization of plant DEG7 protease based on interactions of degeneratedprotease domains. Biochem J. 2011;435(1):167–174. http://dx.doi.org/10.1042/BJ20101613
  • 11. Kley J, Schmidt B, Boyanov B, Stolt-Bergner PC, Kirk R, Ehrmann M, et al. Structural adaptation of the plant protease Deg1 to repairphotosystem II during light exposure. Nat Struct Mol Biol.2011;18(6):728–731. http://dx.doi.org/10.1038/nsmb.2055
  • 12. Sun XW, Fu TJ, Chen N, Guo JK, Ma JF, Zou MJ, et al. The stromal chloroplast Deg7 protease participates in the repair of photosystem IIafter photoinhibition in Arabidopsis. Plant Physiol. 2010;152(3):1263–1273. http://dx.doi.org/10.1104/pp.109.150722
  • 13. Sun W, Gao F, Fan H, Shan X, Sun R, Liu L, et al. The structures of Arabidopsis Deg5 and Deg8 reveal new insights into HtrA proteases.Acta Crystallogr D Biol Crystallogr. 2013;69(5):830–837. http://dx.doi.org/10.1107/S0907444913002023
  • 14. Sun XW, Peng L, Guo J, Chi W, Ma J, Lu C, et al. Formation of DEG5 and DEG8 and their involvement in the degradation of photodamagedphotosystem II reaction center D1 protein in Arabidopsis. Plant Cell.2007;19(4):1347–1361. http://dx.doi.org/10.1105/tpc.106.049510
  • 15. Kapri-Pardes E, Naveh L, Adam Z. The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibitionin Arabidopsis. Plant Cell. 2007;19(3):1039–1047. http://dx.doi.org/10.1105/tpc.106.046573
  • 16. Luciński R, Misztal L, Samardakiewicz S, Jackowski G. The thylakoid protease Deg2 is involved in stress-related degradationof the photosystem II light-harvesting protein Lhcb6 inArabidopsis thaliana. New Phytol. 2011;192(1):174–186. http://dx.doi.org/10.1111/j.1469-8137.2011.03782.x
  • 17. Kato Y, Sun X, Zhang L, Sakamoto W. Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol. 2012;159(4):1428–1439. http://dx.doi. org/10.1104/pp.112.199042
  • 18. Zienkiewicz M, Ferenc A, Wasilewska W, Romanowska E. High light stimulates Deg1-dependent cleavage of the minor LHCII antennaproteins CP26 and CP29 and the PsbS protein in Arabidopsisthaliana. Planta. 2012235(2):279–288. http://dx.doi.org/10.1007/s00425-011-1505-x
  • 19. Luciński R, Misztal L, Samardakiewicz S, Jackowski G. Involvement of Deg5 protease in wounding-related disposal of PsbF apoprotein. Plant Physiol Biochem. 2011;49(3):311–320. http://dx.doi.org/10.1016/j. plaphy.2011.01.001
  • 20. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497.http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • 21. Grabsztunowicz M, Jackowski G. Isolation of intact and pure chloroplasts from leaves of Arabidopsis thaliana plants acclimated to how irradiance for studies on Rubisco regulation. Acta Soc Bot Pol. 2013;82(1):91–95. http://dx.doi.org/10.5586/asbp.2012.043
  • 22. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685.http://dx.doi.org/10.1038/227680a0
  • 23. Luciński R, Jackowski G. AtFtsH heterocomplex-mediated degradation of apoproteins of the major light harvesting complex of photosystemII (LHCII) in response to stresses. J Plant Physiol. 2013;170(12):1082–1089. http://dx.doi.org/10.1016/j.jplph.2013.03.008
  • 24. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, et al. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell.2001;13(7):1499–1510. http://dx.doi.org/10.2307/3871382
  • 25. Kincaid DT, Schneider RB. Quantification of leaf shape with a microcomputer and Fourier transform. Can J Bot. 1983;61(9):2333–2342.http://dx.doi.org/10.1139/b83-256
  • 26. Western TL, Skinner DJ, Haughn GW. Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol.2000;122(2):345–355. http://dx.doi.org/10.1104/pp.122.2.345
  • 27. Chow PS, Landhausser SM. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol.2004;24(10):1129–1136. http://dx.doi.org/10.1093/treephys/24.10.1129
  • 28. Farquhar GD, von Caemmerer S, Berry JA. A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta.1980;149(1):78–90. http://dx.doi.org/10.1007/BF00386231
  • 29. Tanaka Y, Sugano SS, Shimada T, Nishimura I. Enhancement of leaf photosynthetic capacity through increased stomatal densityin Arabidopsis. New Phytol. 2013;198(3):757–764. http://dx.doi.org/10.1111/nph.12186
  • 30. Long SP, Bernacchi CJ. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Proceduresand sources of error. J Exp Bot. 2003;54(392):2393–2401. http://dx.doi.org/10.1093/jxb/erg262
  • 31. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 2007;30(9):1035–1040. http://dx.doi. org/10.1111/j.1365-3040.2007.01710.x
  • 32. Arnon D. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1–15. http://dx.doi.org/10.1104/pp.24.1.1
  • 33. Lancashire PD, Bleiholder H, van der Boom T, Langeluddeke P, Stauss R, Weber E, et al. A uniform decimal code for growth stages ofcrops and weeds. Ann Appl Biol. 1991;119(3):561–601. http://dx.doi.org/10.1111/j.1744-7348.1991.tb04895.x
  • 34. Telfer A, Bollman KM, Poethig RS. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997;124(3):645–654.
  • 35. Yu F, Park S, Rodermel SR. The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplastoligomeric complexes. Plant J. 2004;37(6):864–876. http://dx.doi.org/10.1111/j.1365-313X.2003.02014.x
  • 36. Yu F, Park S, Rodermel SR. Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes. Plant Physiol. 2005;138(4):1957–1966. http://dx.doi.org/10.1104/pp.105.061234
  • 37. Stanne TM, Sjögren LL, Koussevitzky S, Clarke AK. Identification of new protein substrates for the chloroplast ATP-dependent Clpprotease supports its constitutive role in Arabidopsis. Biochem J.2009;417(1):257–268. http://dx.doi.org/10.1042/BJ20081146
  • 38. Tisné S, Reymond M, Vile D, Fabre J, Dauzat M, Koornneef M, et al. Combined genetic and modeling approaches reveal that epidermal cellarea and number in leaves are controlled by leaf and plant developmentalprocesses in Arabidopsis. Plant Physiol. 2008;148(2):1117–1127.http://dx.doi.org/10.1104/pp.108.124271
  • 39. Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, et al. Probing the reproducibility of leaf growth and molecular phenotypes:a comparison of three Arabidopsis accessions cultivated in tenlaboratories. Plant Physiol. 2010;152(4):2142–2157. http://dx.doi.org/10.1104/pp.109.148338
  • 40. Cookson SJ, Chenu K, Granier C. Day length affects the dynamics of leaf expansion and cellular development in Arabidopsis thaliana partiallythrough floral transition timing. Ann Bot. 2007;99(4):703–711.http://dx.doi.org/10.1093/aob/mcm005
  • 41. Huijser P, Schmid M. The control of developmental phase transitions in plants. Development. 2011;138(19):4117–4129. http://dx.doi. org/10.1242/dev.063511
  • 42. Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complexII and grana degradation during leaf senescence. Plant Cell. 2007;19(4):1362–1375. http://dx.doi.org/10.1105/tpc.106.042911
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4bf86f26-1a1b-450a-9bb3-a449d7caf390
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.