Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 22 | 4 |
Tytuł artykułu

Numerical analysis of emissions from marine engines using alternative fuels

Warianty tytułu
Języki publikacji
The current restrictions on emissions from marine engines, particularly sulphur oxides (SOx ), nitrogen oxides (NOx ) and carbon dioxide (CO2 ), are compelling the shipping industry to a change of tendency. In the recent years, many primary and secondary reduction techniques have been proposed and employed in marine engines. Nevertheless, the increasingly restrictive legislation makes it very difficult to continue developing efficient reduction procedures at competitive prices. According to this, the paper presents the possibility to employ alternative fuels. A numerical model was developed to analyze the combustion process and emissions using oil fuel, natural gas and hydrogen. A commercial marine engine was studied, the Wärtsilä 6L 46. It was found, that hydrogen is the cleanest fuel regarding CO2 , hydrocarbons (HC) and carbon monoxide (CO). Nevertheless, it is very expensive for marine applications. Natural gas is cheaper and cleaner than fuel oil regarding CO2 and CO emissions. Still, natural gas emits more NOx and HC than oil fuel. SOx depends basically on the sulphur content of each particular fuel
Słowa kluczowe
Opis fizyczny
  • Escuela Politecnica Superior, Universidade da Coruna, Coruna, Spain
  • Escuela Politecnica Superior, Universidade da Coruna, Coruna, Spain
  • Escuedla Politecnica Superior, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
  • Escuela Politecnica Superior, Universidade da Coruna, Coruna, Spain
  • 1. Skjølsvik, K.O.; Andersen, A.B.; Corbett, J.J.; Skjelvik, J.M. Study on greenhouse gas emissions from ships. Final Report to the International Maritime Organization, MT Rep. Mtoo A23-038, MARINTEK, Trondheim, Norway, 2000
  • 2. Bigos, P.; Puskar, M. Influence of cylinder shape and combustion space on engine output characteristic of two-stroke combustion engine. Zdvihací zařízení v teorii a praxi 3, 2008
  • 3. Kontoulis, P.; Chryssakis, C; Kaitktsis, L. Analysis of combustion and emissions in a large two-stroke marine diesel engine using CFD and T-φ mapping. 18th International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress. Detroit, MI, 2008
  • 4. Panagiotis, A.; Chryssakis, C.; Kaiktsis, L. Optimization of injection characteristics in a large marine diesel engine using evolutionary algorithms. SAE Paper 2009-01-1448, 2009
  • 5. Lamas, M.I.; Rodriguez, C.G. Emissions from marine engines and NOx reduction methods, Journal of Maritime Research, volume 9(1), pp. 77-82, 2012
  • 6. Millo, F.; Bernardi, M.G.; Delneri, D. Computational analysis of internal and external EGR strategies combined with Miller cycle concept for a two stage turbocharged medium speed marine diesel engine. SAE Paper 2011-011142, 2011
  • 7. Jayaran, V.; Nigam, A.; Welch, W.A.; Millar, J.W.; Cocker, I.I.: Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels. Journal of the Air & Waste Management Association, vol 61(1), pp 1421, 2011
  • 8. Andreasen, A.; Mayer, S. Use of seawater scrubbing for SO2 removal from marine engine exhaust gas. Energy and fuels, vol. 21, pp. 3274-3279, 2007
  • 9. Banawan, A.A.; El-Gohary, M.M.; Sadek, I.S. Environmental and economical benefits of changing from marine diesel oil to natural gas fuel for sort-voyage highpower passenger ships. Engineering for the Maritime Environment, vol. 224, pp. 103-110, 2010
  • 10. Seddiek, I.S.; Elgohary, M.M. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. International Journal of Naval Architecture and Ocean Engineering, vol. 6, pp. 737-748, 2014
  • 11. Eide, M., Longva, T., Hoffmann, P., Endresen, Ø., and Dalsøren, S.: Future cost scenarios for reduction of ship CO2 emissions. Maritime Policy & Management., vol. 38, pp. 11–37, 2011
  • 12. Lamas, M.I., Rodríguez, C.G. and Rebollido, J.M. Numerical model to study the valve overlap period in the Wärtsilä 6L 46 four-stroke marine engine. Polish Maritime Research, vol. 19(1), pp. 31-37, 2012
  • 13. [13] Lamas, M.I. and Rodríguez, C.G. Numerical model to study the combustion process and emissions in the Wärtsilä 6L 46 four-stroke marine engine. Polish Maritime Research, vol. 20(2), pp. 61-66, 2013.
  • 14.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.