Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 15 | 1 |

Tytuł artykułu

Conantokin G-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder

Treść / Zawartość

Warianty tytułu

Języki publikacji



Conantokin G (CTG), isolated from the venom of the marine cone snail Conus geographus, is an antagonist of N-methyl-d-aspartate receptors (NMDARs), the activation of which, especially those located on the central afferent terminals and dorsal horn neurons, leads to hypersensitivity and pain. Thus, CTG blocking of NMDARs, has an antinociceptive effect, particularly in the case of neurogenic pain treatment. As many urinary bladder disorders are caused by hyperactivity of sensory bladder innervation, it seems useful to estimate the influence of CTG on the plasticity of sensory neurons supplying the organ. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall of six juvenile female pigs. Three weeks later, intramural bladder injections of CTG (120 μg per animal) were carried out in all animals. After a week, dorsal root ganglia of interest were harvested from all animals and neurochemical characterization of FB+ neurons was performed using a routine double-immunofluorescence labeling technique on 10-μm-thick cryostat sections. CTG injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), pituitary adenylate cyclase activating polypeptide (PACAP), somatostatin (SOM), calbindin (CB) and nitric oxide synthase (NOS) when compared with healthy animals (20% vs. 45%, 13% vs. 26%, 1.3% vs. 3%, 1.2 vs. 4% and 0.9% vs. 6% respectively) and to an increase in the number of cells immunolabelled for galanin (GAL, 39% vs. 6.5%). These data demonstrated that CTG changed the chemical coding of bladder sensory neurons, thus indicating that CTG could eventually be used in the therapy of selected neurogenic bladder illnesses.








Opis fizyczny



  • Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-182 Olsztyn, Poland


  • Ahluwalia A, Maggi CA, Santicioli P, Lecci A, Giuliani S (1994) Characterization of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111: 1017-1022.
  • Aley KO, McCarter G, Levine JD (1998) Nitric oxide signaling in pain and nociceptor sensitization in the rat. J Neurosci 18: 7008-7014.
  • Barton ME, White HS, Wilcox KS (2004) The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res 59: 13-24.
  • Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins S, Reynolds IJ, Caterina MJ (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA 98: 13396-13401.
  • Bossowska A, Crayton R, Radziszewski P, Kmiec Z, Majewski M (2009) Distribution and neurochemical characterization of sensory dorsal root ganglia neurons supplying porcine urinary bladder. J Physiol Pharmacol 60: 77-81.
  • Bustos G, Abarca J, Forray MI, Gysling K, Bradberry CW, Roth RH (1992) Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies. Brain Res 585: 105-115.
  • Callsen-Cencic P, Mense S (1997) Expression of neuropeptides and nitric oxide synthase in neurons innervating the inflamed rat urinary bladder. J Auton Nerv Syst 65: 33-44.
  • Chen T, Hu Z, Quirion R, Hong Y (2008) Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22. Neuropharmacology 54: 796-803.
  • Chien CT, Yu HJ, Lin TB, Lai MK, Hsu SM (2003) Substance P via NK1 receptor facilitates hyperactive bladder afferent signaling via action of ROS. Am J Physiol Renal Physiol 284: F840-F851.
  • Colvin LA, Mark MA, Duggan AW (1997) The effect of a peripheral mononeuropathy on immunoreactive (ir)-galanin release in the spinal cord of the rat. Brain Res 766: 259-261.
  • Dickenson AH (1990) A cure for wind up: NMDA receptor antagonists as potential analgesics. Trends Pharmacol Sci 11: 307-309.
  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51: 7-61.
  • Duggan AW, Riley RC, Mark MA, MacMillan SJ, Schaible HG (1995) Afferent volley patterns and the spinal release of immunoreactive substance P in the dorsal horn of the anaesthetized spinal cat. Neuroscience 65: 849-858.
  • Fisher K, Coderre TJ, Hagen NA (2000) Targeting the N-methyl-D-aspartate receptor for chronic pain management. Preclinical animal studies, recent clinical experience and future research directions. J Pain Symptom Manage 20: 358-373.
  • Gonzalez-Cadavid NF, Ryndin I, Vernet D, Magee TR, Rajfer J (2000) Presence of NMDA receptor subunits in the male lower urogenital tract. J Androl 21: 566-578.
  • Hama A, Sagen J (2009) Antinociceptive effects of the marine snail peptides conantokin-G and conotoxin MVIIA alone and in combination in rat models of pain. Neuropharmacology 56: 556-563.
  • Honda CN (1995) Differential distribution of calbindin-D28k and parvalbumin in somatic and visceral sensory neurons. Neuroscience 68: 883-892.
  • Ishizuka O, Alm P, Larsson B, Mattiasson A, Andersson KE (1995) Facilitatory effect of pituitary adenylate cyclase activating polypeptide on micturition in normal, conscious rats. Neuroscience 66: 1009-1014.
  • Kakizaki H, de Groat WC (1996) Role of spinal nitric oxide in the facilitation of the micturition reflex by bladder irritation. J Urol 155: 355-360.
  • Layer RT, Wagstaff JD, White HS (2004) Conantokins: peptide antagonists of NMDA receptors. Curr Med Chem 11: 3073-3084.
  • Li YN, Sakamoto H, Kawate T, Cheng CX, Li YC, Shimada O, Atsumi S (2005) An immunocytochemical study of calbindin-D28K in laminae I and II of the dorsal horn and spinal ganglia in the chicken with special reference to the relation to substance P-containing primary afferent neurons. Arch Histol Cytol 68:5 7-70.
  • Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386: 721-724.
  • Ma MC, Huang HS, Chen YS, Lee SH (2008) Mechanosensitive N-methyl-D-aspartate receptors contribute to sensory activation in the rat renal pelvis. Hypertension 52: 938-944.
  • Mabuchi T, Matsumura S, Okuda-Ashitaka E, Kitano T, Kojima H, Nagano T, Minami T, Ito S (2003) Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production. Eur J Neurosci 17: 1384-1392.
  • Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242: 81-84.
  • Marvizon JC, McRoberts JA, Ennes HS, Song B, Wang X, Jinton L, Corneliussen B, Mayer EA (2002) Two N-methyl-D-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization. J Comp Neurol 446: 325-341.
  • Mersdorf A, Schmidt RA, Kaula N, Tanagho EA (1992) Intrathecal administration of substance P in the rat: the effect on bladder and urethral sphincteric activity. Urology 40: 87-96.
  • Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57: 1-164.
  • Ng YK, Zeng XX, Ling EA (2004) Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 1018: 66-72.
  • Ohsawa M, Brailoiu GC, Shiraki M, Dun NJ, Paul K, Tseng LF (2002) Modulation of nociceptive transmission by pituitary adenylate cyclase activating polypeptide in the spinal cord of the mouse. Pain 100: 27-34.
  • Olivera BM (1997) E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8: 2101-2109.
  • Olivera BM, Teichert RW (2007) Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol Interv 7: 251-260.
  • Sandkuhler J, Fu QG, Helmchen C (1990) Spinal somatostatin superfusion in vivo affects activity of cat nociceptive dorsal horn neurons: comparison with spinal morphine. Neuroscience 34: 565-576.
  • Sato K, Kiyama H, Park HT, Tohyama M (1993) AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. Neuroreport 4: 1263-1265.
  • Than M, Nemeth J, Szilvassy Z, Pinter E, Helyes Z, Szolcsanyi J (2000) Systemic anti-inflammatory effect of somatostatin released from capsaicin-sensitive vagal and sciatic sensory fibres of the rat and guinea-pig. Eur J Pharmacol 399: 251-258.
  • Vaughan CW, Satchell PM (1995) Urine storage mechanisms. Prog Neurobiol 46: 215-237.
  • Vizzard MA (2000) Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol 420: 335-348.
  • Vizzard MA (2001) Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat 21: 125-138.
  • Xiao C, Huang Y, Dong M, Hu J, Hou S, Castellino FJ, Prorok M, Dai Q (2008) NR2B-selective conantokin peptide inhibitors of the NMDA receptor display enhanced antinociceptive properties compared to non-selective conantokins. Neuropeptides 42: 601-609.
  • Zvarova K, Murray E, Vizzard MA (2004) Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury. J Comp Neurol 475: 590-603.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.